
AP0062
APPLICATION NOTE

 1/18

Copyright (c) 2022, AMiT
®
, spol. s r.o.

amitomation.com

Communication in M-Bus network (Gen2)

Abstract

Transfer of technological data between Generation 2 control systems made by AMiT and
energy meters via the M-Bus protocol.

Author: Michal Kupčík
Document: ap0062_ap_en_002.pdf

Attachments

File contents: ap0062_ap_en_002.zip

mbus_p1_en_101.dsox Loading data from meters into the control system using the
UserComBinary objects including decoding

mbus_p2_en_101.dsox Loading data from meters into the control system via MODBUS RTU
and MODBUS TCP protocols including decoding

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 2/18

Contents

Contents ... 2
Revision history .. 3
Related documentation .. 3
Purpose of the application note.. 3

1 M-Bus .. 4

1.1 Basic characteristics .. 4
1.2 Physical layer ... 4
1.3 Frame format.. 5
1.3.1 Frame fields description ... 5
1.3.2 Usage of frames ... 6

2 Communication of control systems via M-Bus ... 7

2.1 HW parametrisation ... 7
2.2 SW parametrisation.. 8
2.2.1 Function block fb_MBusDecode .. 8
2.2.2 Function block fb_MBusDevice .. 9
2.2.3 Usage of function block fb_MBusDevice .. 10

3 Sample application .. 12

4 Appendix A ... 13

4.1 Communication via MODBUS protocols .. 13
4.1.1 HW parametrisation ... 13
4.1.2 SW parametrisation.. 13
4.1.3 Sample application ... 16

5 Technical support .. 17

6 Notice .. 18

COMMUNICATION IN M-BUS NETWORK (GEN2)

 3/18 ap0062_ap_en_002

Revision history

Version Date Changes by Changes

001 13. 04. 2021 Kupčík M. New document.

002 06. 04. 2022 Kupčík M. Local text corrections, modified memory usage
values in chapter 2.2.2.

Related documentation

1. Help tab in the EsiDet section of the DetStudio development environment
file: EsiDet_en.chm

2. DM-MBUS64 – communication converter with M-Bus protocol – Operation manual
file: dm-mbus64_g_en_xxx.pdf

3. Application note AP0056 – Communication in MODBUS RTU network
file: ap0056_ap_cz_xxx.pdf

4. Application note AP0057 – Communication in MODBUS TCP network
file: ap0057_ap_cz_xxx.pdf

5. EN 13757 – Set of standards defining the M-Bus protocol

Purpose of the application note

The application note is intended for Generation 2 control systems – control systems with the
FreeRTOS operating system programmed in DetStudio in the EsiDet editor. More information
about the system generations can be found on the amitomation.cz website.

https://amitomation.com/

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 4/18

1 M-Bus
M-Bus, or Meter-Bus, standard is designed to collect data from consumption meters of various
media (e.g. potable water, DHW, gas, heat, electricity). It was developed by University Padeborn
and the Texas Instruments company.

1.1 Basic characteristics

Considering its relatively narrow and specialised field of application, there are very specific
requirements for M-Bus. It has to be able to interconnect a large number of devices at a distance of
up to several kilometres. It requires high-quality protection of data transfer against errors. On the
other hand, a typical feature of the application is a fairly infrequent reading of measured values
with low demand for real-time response.

Standard configuration characteristics can be summed up in the following points:
◆ special implementation of the physical layer,

◆ galvanically isolated interface,

◆ connected devices can be optionally powered via the bus,

◆ two-wire line up to several kilometres long,

◆ communication control based on Master-Slave principle,

◆ up to 250 participants without the implementation of a network layer,

◆ asynchronous character transfer, 8 bits of data, even parity,

◆ baud rate of 300 bps to 38,400 bps,

◆ data block secured by means of a check sum.

Standard M-Bus configuration includes a single control station (Master) and up to 250 participant
stations. Typically, M-Bus networks use linear topology. The length of a cable segment in this
configuration must not exceed 1 000 m (350 m for 9,600 bps). For more extensive systems, it is
necessary to use more complex configurations when the entire system is divided into zones.
Individual zones consist of segments and these are controlled by zone controllers.

A complete and detailed description of the M-Bus protocol is available in EN 13757.

1.2 Physical layer

The M-Bus standard uses special implementation of the physical layer described in standards
EN 13757-2 and EN 13757-4. Typically, this layer is a two-wire bus based on a common telephone
cable with half-duplex data transfer and a Master-Slave access control. To power participant
stations using that cabling, M-Bus uses changes in voltage levels for transfer from the control
station to participant station; it uses changes in current consumption in the opposite direction. In
the direction from the control station to the subscriber stations, the logical one corresponds to the
voltage +36 V at the output of the control station exciter, and the logical zero corresponds to the
voltage 12 V lower, i.e. +24 V. In the direction from the subscriber station to the control station, the
logic 1 is represented by a current draw of 1.5 mA, the logic 0 by a current draw of 11 mA to 20 mA
higher. Current consumed while in the state of log. 1 can be used to power galvanically isolated
interface and possibly even the meter itself.

While idle, the bus is on the level of log. 1 (+36 V) and the consumption from the control station
driver corresponds to the number of participant stations multiplied by the consumption of a
participant station in log. 1, i.e. 1.5 mA. As is evident from the standard requirements, the higher
the number of participant station, the higher are the demands on the driver. Moreover, given that
the number of participant stations can vary with time – as they can be added or removed at any
time – the control station cannot detect the absolute current consumption, only the aforementioned
difference. Similarly, the voltage at different points of the bus – as monitored by the participant
stations – varies; it depends on the resistance of the line and on the number of participant stations
connected to it. That means that the participant stations have to react to the changes in the voltage
of the bus, not to the absolute values. Given the rather significant changes in both the voltage

COMMUNICATION IN M-BUS NETWORK (GEN2)

 5/18 ap0062_ap_en_002

(12 V) and the current (11 mA to 20 mA), the physical layer of the standard shows a high
resistance to external noise.

The second option is to use wireless transmission of data. Given that the AMiT control systems do
not support communication over said frequencies, this option is not discussed in this application
note.

1.3 Frame format

M-Bus uses four frame formats:
◆ Single Character,

◆ Short Frame,

◆ Control Frame,

◆ Long Frame.

Single character Short frame Control frame Long frame

0xE5 Start 0x10 Start 0x68 Start 0x68

 C field L field = 3 L field

 A field L field = 3 L field

 Checksum Start 0x68 Start 0x68

 Stop 0x16 C field C field

 A field A field

 Cl field Cl field

 Checksum User data
(0 to 252) byte Stop 0x16

 Checksum

 Stop 0x16

Single character
This frame consists of a single character, namely 0xE5. It is used to confirm that another
transmitted frame has been received.

Short frame
This frame has a fixed length. It starts with introductory character 0x10, followed by field C, field A,
check sum and the closing character 0x16. Check sum is calculated only from fields C and A.

Control frame
The content of the control frame corresponds to the long frame, but it does not include “user data”.
Check sum is calculated from fields C, A and CI.

Long frame
This frame starts with character 0x68, followed by a twice repeated L field containing the data
length, and then again by the introductory character 0x68. This is followed by fields C, A and CI,
user data with length ranging from (0 to 252) byte, check sum and the terminating character 0x16.
L field contains the number of bytes of user data increased by three (i.e. by the length of fields C, A
and CI). Check sum is calculated from fields C, A and CI and from user data.

1.3.1 Frame fields description

All fields have a length of one character which corresponds to eight bits.

C field (Control Field, Function Field)
This field contains frame control parameters. Among other things, it determines the data flow
direction. The description below calls it the main byte of the frame.

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 6/18

A field (Address Field)
The A field is used for addressing or determining a participant station or to transmit/receive a
frame.

Individual participant stations (slaves) can take addresses from 0 to 250. Entering address 255
sends a broadcast that requires no reply. Entering address 254 sends a broadcast that requires a
reply. Clearly, in the second case, replies will collide when there is more than one participant
station connected. It is used solely for test purposes. Address 253 indicates so-called secondary
addresses. Addresses 251 and 252 are reserved for future use.

The secondary addresses are not discussed in this application note.

CI field (Control Information Field)
CI field carries information that is already included in the application protocol. Among other things,
it is used to distinguish the format of a long and control frame.

User data
When it is a reply from a meter with usual data (CI field has a value of 0x72 or 0x76 – RSP_UD),
these bytes have the following significance:
◆ Header bytes 8 to 19:

◆ 4 bytes of ID number of the meter; these usually correspond to a part of the serial number

of the meter or its secondary address,

◆ 2 bytes code three identification letters of the meter manufacturer,

◆ 1 byte with the meter version,

◆ 1 byte codes the metered medium,

◆ 1 byte with the frame counter,

◆ 1 byte codes the meter state,

◆ 2 bytes “signature” – reserved for future specification, values 0x00 0x00.

◆ following data bytes:

◆ 1 byte DIF – definition of the value number type; when the high bit is set, the following part

is DIFE,

◆ 0 to 10 bytes DIFE – extension of the value identifier; when the high bit is set, the following

part is another DIFE,

◆ 1 byte VIF – value unit and multiplier; when the high bit is set, the following bit is VIFE,

◆ 0 to 10 bytes VIFE – extended identifier of the value unit and multiplier; when the high bit is

set, the following bit is another VIFE,

◆ 0 to xx bytes for value; in the case of ASCII unit, the unit is sent first, the value bytes come

after,

◆ what follows is that many combinations of DIF (+ n*DIFE) + VIF (+ m*VIFE) + value, how

many quantities there are.

1.3.2 Usage of frames

This application note uses the following frames:
◆ single character – meter response to initialisation,

◆ short frame – meter initialisation (SND_NKE) – using the main byte of the frame 0x40,

◆ short frame – request for usual data (SND_UD2) – using the main byte of the frame 0x5B or

0x7B,

◆ long frame – response of the meter with usual data (RSP_UD) – received main byte

0x08/0x18/0x28/0x38.

COMMUNICATION IN M-BUS NETWORK (GEN2)

 7/18 ap0062_ap_en_002

2 Communication of control systems via M-Bus
Control systems of the AMiT company always take the role of the master in the M-Bus network,
therefore, they cannot be used as slaves in M-Bus networks.

2.1 HW parametrisation

It is necessary to use a converter for communication of control systems in a M-Bus network. The
AMiT company offers DM-MBUS64 – an M-Bus converter – that can be connected to control
systems both via serial line and via the Ethernet interface. The converter does not perform any
direct coding of the meter data.

Parametrisation of the converter is usually done via a web site while it is in the so-called service
mode. More information on the parametrisation of the converter can be found in the corresponding
operation manual.

The converter supports communication via transparent data transfer (Direct mode), encapsulation
of M-Bus data into the APE protocol and through MODBUS protocols. The following chapters
operate with the transparent data transfer (Direct mode).

Further description of the APE protocol is in the operation manual for the converter.

Fig. 1 – Connection of the control system to the converter (DM-MBUS64) via Ethernet

Fig. 2 – Connection of the control system to the converter (DM-MBUS64) via RS232

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 8/18

Fig. 3 – Connection of the control system to the converter (DM-MBUS64)
via RS485 and the DM-232TO485 converter

Algorithms described below can be used even when using converters of other manufacturers.
Converters of other manufacturers have to support transparent data transfer (whatever they
receive from the serial line or Ethernet, they send to M-Bus without any changes [in terms of SW]
and vice versa).

Caution
A single serial line of the control system or HMI can use only one communication protocol. When
using communication with a converter and via a serial line, the same communication protocol has
to be selected for the converter as for other devices connected to the serial line.

2.2 SW parametrisation

The following steps are usually employed to communicate with the meter:

1. send initialisation short frame,

2. wait for a single character response 0xE5,

3. a) in the case the response does not come, re-send the initialisation short frame,

b) when the response comes, send a short frame with a request for usual data,

4. a) in the case the response with usual data does not come, re-send the short frame with
a request for usual data,

b) when the response with usual data comes, decode it,

5. in rare cases, when it is needed to retrieve more usual data from the meter, repeat step 3. b)
with the other value of the main byte of the frame 0x5B / 0x7B.

The fb_MBusDevice function block sends the initialisation frame and the usual data request.

Furthermore, the function block deals with receiving data and with re-sending the last sent frame.

The fb_MVusDecode function block decodes received usual data to numeric and text values; it

may also signalise potential issues that occur during decoding.

2.2.1 Function block fb_MBusDecode

Basic characteristics of the function block:
◆ decodes up to 40 numeric values from the meter – Values parameter,

◆ decodes up to 10 text values from the meter – ValuesStrings parameter,

◆ each value is accompanied by a read unit – UnitsStrings parameter,

◆ presentation of the numerical code of the meter medium – DeviceInfo parameter,

◆ decoding the three-letter manufacturer ID – DeviceInfo parameter,

◆ support of fixed standards of value formats: Int (1 to 8 bytes), Real (4 bytes) and BCD (2 to 12

digits),

◆ support of “LVAR” of variable value formats: ASCII string (up to 20 characters), positive and

negative BCD value (up to 16 digits) and a binary number (up to 8 bytes),

COMMUNICATION IN M-BUS NETWORK (GEN2)

 9/18 ap0062_ap_en_002

◆ DIFE values are not processed in any way,

◆ support of standard VIF units: Wh, J, m3, kg, sec., min., hours, days, W, J/h, m3/h, m3/min.,

m3/s, kg/h, °C, K, bar, DateTime,

◆ support for extended VIFE units for VIF 0x7B and 0x7D: MWh, GJ, m3, tons, MW, GJ/h, °C, W,

Volts, Ampers,

◆ support for textual representation of units for VIF 0x7C,

◆ using a question mark character in the case the combination of VIF and VIFE is not one of the

supported ones,

◆ frame inspection: header check, received address correctness check, CRC check, frame data

completeness check, signalisation of non-decodable value or data types – Errors parameter.

The fb_MBusDevice function block operates in its body with an instance of the fb_MBusDecode

function block. For correct operation, the fb_MBusDecode definition needs to be present in

DetStudio in the “Project” window in the “Function blocks” node.

Complete description of the fb_MBusDecode function block is in the “Documentation” tab of the

function block definition in DetStudio.

2.2.2 Function block fb_MBusDevice

Basic characteristics of the function block:
◆ used in processes with a period of 100 ms,

◆ launches communication with the meter at the leading edge of the SyncMarkIn input

parameter,

◆ alternation of defined outbound communication frames,

◆ doubled repetition of outbound frames when no correct response comes,

◆ handover of received usual data to the fb_MBusDecode function block,

◆ saving the received usual data frame for potential follow-up user processing,

◆ presentation of decoded values, units and errors – parameters Values, ValuesStrings,

UnitsStrings, DeviceInfo and Errors,

◆ existence of resources for sharing one communication interface for multiple meters defined by

instances of fb_MBusDevice function blocks.

Meter addressing
Usually, one instance of a function block corresponds to one meter. This meter is defined by its
primary address. When a negative address value is entered, the corresponding block is eliminated
from the communication group.

Multiple-frame meters
In some cases, the meter can provide more usual data than a single frame can accommodate. For
example, when the meter provides 600 byte of usual data, it is necessary to communicate with the
meter by sending the frames with requests in the following order:
◆ initialisation short frame,

◆ request for usual data with the main frame byte 0x5B,

◆ request for usual data with the main frame byte 0x7B,

◆ request for usual data with the main frame byte 0x5B.

The CommType parameter of the function block defines whether the given instance should send

initialisation frames or not and which byte is to be used as the main byte of the frame. Possible
values:
◆ 0 – an initialisation frame is sent as well as a request for values with the main byte 0x5B,

◆ 1 – an initialisation frame is sent as well as a request for values with the main byte 0x7B,

◆ 2 – only request for values is sent with the main byte 0x5B,

◆ 3 – only request for values is sent with the main byte 0x7B.

The mentioned multi-frame meter will be represented by three instances of the function block while
the value of the address is always the same and the values of the CommType parameters are

defined for individual instances of blocks at 0, 3 and 2.

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 10/18

Memory requirements
Each use of the function block uses 4.4 kB of RAM memory and 1.9 kB of FLASH memory. Control
systems with 1 MB of RAM are therefore limited to roughly a 230 fb_MBusDevice blocks.

When it is necessary to use more blocks, it is possible to bypass this limit by lowering the number
of rows of the output matrix parameters with decoded values:
◆ Function block fb_MBusDevice:

◆ parameter Values with default dimensions set to 40×1,

◆ parameter UnitStrings with default dimensions set to 40×20,

◆ parameter ValuesStrings with default dimensions set to 10×20.

For example, if the first two matrices mentioned above with a default dimension of 40 rows are
reduced to 20 rows and the third matrix with a default dimension of 10 rows is reduced to 2 rows,
the RAM requirement drops to 3.1 kB. In the case of a control system with 1 MB of RAM, this
would result in a rise of the maximum possible number of fb_MBusDevice function blocks to

ca. 320.

Complete description of the fb_MBusDevice function block is in the “Documentation” tab of the

function block definition in DetStudio.

2.2.3 Usage of function block fb_MBusDevice

The function block provides frames for transmission, defines occasions when they are to be sent
or, in the case of received data, when they are to be read, when the block is to receive the number
of bytes received in the frame and the frame as such.

This is represented by block parameters:
◆ FrameReceived – received frame,

◆ BytesReceived – amount of data in the received frame,

◆ FrameSend – frame to be sent,

◆ Command – definition of a communication action.

Based on the value of the Command parameter, one of the following actions is supposed to occur:

◆ 0, 1 – no action,

◆ 2 – send 5 characters of the frame readied in the FrameSend parameter and set the Command

parameter to 1,

◆ 3 – save the received frame into the FrameReceived parameter, save the number of received

bytes to the BytesReceived parameter and set the Command parameter to 1.

The function block does not perform any communication over any interface. To send or receive
frames, the UserComBinary object is used – specifically its Send() method and parameters

BufferWrite, BufferRead and BytesReceived. When sending the frame, it is recommended to

erase the incoming buffer; when receiving a frame, it is recommended to erase the outgoing buffer.
Whether the data are sent via serial line or Ethernet depends on the settings of the
UserComBinary communication object parameters.

More information on the UserComBinary communication object can be found in the DetStudio IDE

help.

Using shared variables
Usually, there is more than one meter connected to a converter. These meters are represented as
instances of the fb_MBusDevice function block. At any given time, only one instance of the

function block can be accessing a UserComBinary communication object and read data from one

of the meters. Other instances of the fb_MBusDevice function block can access the same

USerComBinary communication object only after the previous instance of fb_MBusDevice finishes

its work. That means that variables that are used to set the parameters of the fb_MBusDevice

function block need to be shared. Specifically, this concerns four variables of the following types
and dimensions:

COMMUNICATION IN M-BUS NETWORK (GEN2)

 11/18 ap0062_ap_en_002

◆ ARRAY OF INT [1×262] – used in FrameReceived parameters,

◆ INT – used in BytesReceived parameters,

◆ ARRAY OF INT [1×5] – used in FrameSend parameters,

◆ INT – used in Command parameters.

Sample usage for three instances of the fb_MBusDevice function block defining three meters:

fb_MBusDevice1(

 FrameReceived = MBusFrameRec,

 BytesReceived = MBusBytesRec,

 FrameSend = MBusFrameSend,

 Command = MBusCommand

);

fb_MBusDevice2(

 FrameReceived = MBusFrameRec,

 BytesReceived = MBusBytesRec,

 FrameSend = MBusFrameSend,

 Command = MBusCommand

);

fb_MBusDevice3(

 FrameReceived = MBusFrameRec,

 BytesReceived = MBusBytesRec,

 FrameSend = MBusFrameSend,

 Command = MBusCommand

);

In this example, this concerns variables MBusFrameRec, MBusBytesRec, MBusFrameSend and

MBusCommand.

Algorithm of operation with the UserComBinary object
When the aforementioned parameters of fb_MBusDevice function blocks are linked to shared

variables, it is possible to create a simple algorithm that operates the UserComBinary

communication object based on the value of the shared variable defined for the Command

parameter.

Resulting code:

CASE MBusCommand OF

 2:

 FOR i = 0 TO 4 DO

 UserComBinary1.BufferWrite[0,i] = Int_To_Byte(MBusFrameSend[0,i]);

 ENDFOR;

 UserComBinary1.Send(5);

 UserComBinary1.ClearReadBuffer();

 MBusCommand = 1;

 3:

 FOR i = 0 TO UserComBinary1.BytesReceived DO

 MBusFrameRec[0,i] = UserComBinary1.BufferRead[0,i];

 ENDFOR;

 MBusBytesRec = UserComBinary1.BytesReceived;

 UserComBinary1.ClearWriteBuffer();

 MBusCommand = 1;

ENDCASE;

The Command parameter is used by the function blocks not only for writing a required action, it is

also read. This prevents collisions when more instances try to send or accept inbound data at the
same time.

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 12/18

3 Sample application
The application note includes a sample application designed for communication with meters. This
application includes the definition of two UserComBinary communication objects. Each is defined

with a different IP address representing a different communication converter. Each
UserComBinary object uses three instances of the fb_MBusDevice function block.

Individual communications are divided into subroutines that are called from the periodic process
with a period of 100 ms. Communication via the communication object is allowed by setting the
AutomatRun local variable to a positive, non-zero value. Reading as such is launched by a

synchronisation bit from the SyncMark1 local block. By default, the communication is to occur

every hour. The frequency of the reads can be changed by adjusting the values of parameters of
the SyncMark1 block.

More information on the SyncMark block can be found in the DetStudio IDE help.

The sample application is attached to the application note in the “mbus_p1_cz_xxx.dsox” file. This
project has been created for control system AMR-OP87 RevA. However, it can be modified to suit
any control system fitted with the Ethernet interface using the DetStudio menu “Tools / Change
station…”.

Caution
The sample application was designed for DetStudio 2.2.43 or newer!

COMMUNICATION IN M-BUS NETWORK (GEN2)

 13/18 ap0062_ap_en_002

4 Appendix A

4.1 Communication via MODBUS protocols

When it is not possible, for any reason, to use communication with a converter via the
UserComBinary communication object, it is possible to communicate with the DM-MBUS64

converter via MODBUS protocols. That is either MODBUS RTU via one of the serial lines or
MODBUS TCP via the Ethernet interface.

4.1.1 HW parametrisation

Parametrisation of the DM-MBUS64 converter is usually done via a web site while it is in the so-
called service mode. The corresponding converter interface needs to be set to MODBUS.

4.1.2 SW parametrisation

To communicate with the converter, the following holding registers are used:
◆ 100 – setting the converter action,

◆ 101 to 361 – outbound frame to the M-Bus network,

◆ 400 – reading the state of the inbound frame,

◆ 402 – number of inbound frames from the M-Bus network,

◆ 403 to 663 – inbound frame from the M-Bus network.

Detailed description of the converter actions and communication registers can be found in its
operation manual.

To initialise a meter or a request for usual data, a short, 5-byte frame is used. One of the functions
of the DM-MBUS64 converter is the automatic checksum value calculation and appending the end
character 0x16. It is therefore sufficient to write only 3 bytes of the outbound frame and to
communicate only registers 101 to 103. Given that there may be issues in the future, the sample
application operates with a communication definition with 20 registers in the range of 101 to 121.

For initialisation of reading, error monitoring and value decoding, the previously described
fb_MBusDevice function block can be used. To use it, all communication with the converter has to

be set as event-based – writing into registers will be performed after the corresponding variable is
set, and registers will be read after the Refresh() method of the corresponding variable was

called. This is the reason why all priorities of the register communication are set to None.

The MODBUS protocol supports reading of up to 125 registers. An inbound frame from the M-Bus
network can potentially have up to 261 characters. That is why registers 403 to 663 need to be
separated into three communicated groups. The sample application uses division to 90, 90 and 81
registers. The following figure shows the list of used definitions of MODBUS registers. This applies
to communication via MODBUS RTU protocol and MODBUS TCP protocol.

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 14/18

Fig. 4 – List of used MODBUS registers’ definitions

More information on communication objects ModbusMaster, ModbusDevice, ModbusMasterTCP

and ModbusDeviceTCP can be found in the DetStudio IDE help.

As soon as the corresponding ModbusDevice or ModbusDeviceTcp communication object is

defined, it is possible to adjust the communication algorithm. To communicate via the MODBUS
protocol with the DM-MBUS64 converter, the following method is recommended:

1. save the outbound frame to the converter and reset the number of received characters,

2. pause for the communication to occur,

3. write 1 to the action register of the converter to send a frame into the M-Bus network,

4. pause for the communication to occur,

5. read the value of the inbound frame status register,

6. pause for the communication to occur,

7. reading the status of the inbound frame; possible variants:

a) the inbound frame has yet to come, repeat from step 4,

b) the inbound frame came – read values of the converter frame, the number of incoming
bytes and reset the value of the inbound frame state, continue with step 8,

c) the converter is indicating an error, the algorithm therefore interrupts the communication
prematurely and rests the value of the inbound frame status,

8. pause for the communication to occur,

9. processing the values and clearing the buffer of the incoming frame from the converter's
M-Bus network by writing the decade value 203 to the converter's action register.

This method described above is representing the following code:

CASE Modbus_step OF

 1:

 tmpOutTlg[0,0] = Int_To_Byte(MBusFrameSend[0,0]);

 tmpOutTlg[0,1] = Int_To_Byte(MBusFrameSend[0,1]);

 tmpOutTlg[0,2] = Int_To_Byte(MBusFrameSend[0,2]);

 ModbusMaster1.ModbusDevice1.MBus_OutTlg = tmpOutTlg;

 MBusBytesRec = 0;

 Modbus_step = 2;

 2:

 Modbus_step = 3;

 3:

 ModbusMaster1.ModbusDevice1.MBus_Flags = 1;

 Modbus_time = 0;

 Modbus_step = 4;

 4:

 Modbus_time = Modbus_time + 1;

 Modbus_step = Modbus_time >= 2 ? 5 : 4;

COMMUNICATION IN M-BUS NETWORK (GEN2)

 15/18 ap0062_ap_en_002

 5:

 ModbusMaster1.ModbusDevice1.MBus_ComStat.Refresh();

 Modbus_time = 0;

 Modbus_step = 6;

 6:

 Modbus_time = Modbus_time + 1;

 Modbus_step = Modbus_time >= 2 ? 7 : 6;

 7:

 IF ModbusMaster1.ModbusDevice1.MBus_ComStat.0 THEN

 Modbus_time = 0;

 Modbus_step = 4;

 ELSE

 IF ModbusMaster1.ModbusDevice1.MBus_ComStat.1 THEN

 ModbusMaster1.ModbusDevice1.MBus_RecChars.Refresh();

 ModbusMaster1.ModbusDevice1.MBus_InTlg0.Refresh();

 ModbusMaster1.ModbusDevice1.MBus_InTlg1.Refresh();

 ModbusMaster1.ModbusDevice1.MBus_InTlg2.Refresh();

 ModbusMaster1.ModbusDevice1.MBus_ComStat = 0;

 Modbus_time = 0;

 Modbus_step = 8;

 ELSE

 ModbusMaster1.ModbusDevice1.MBus_ComStat = 0;

 Modbus_step = 0;

 ENDIF;

 ENDIF;

 8:

 Modbus_time = Modbus_time + 1;

 Modbus_step = Modbus_time >= 6 ? 9 : 8;

 9:

 MBusBytesRec = ModbusMaster1.ModbusDevice1.MBus_RecChars;

 j = 0;

 FOR i = 0 TO 89 DO

 MBusFrameRec[0,j] = ModbusMaster1.ModbusDevice1.MBus_InTlg0[0,i];

 j = j + 1;

 ENDFOR;

 FOR i = 0 TO 89 DO

 MBusFrameRec[0,j] = ModbusMaster1.ModbusDevice1.MBus_InTlg1[0,i];

 j = j + 1;

 ENDFOR;

 FOR i = 0 TO 80 DO

 MBusFrameRec[0,j] = ModbusMaster1.ModbusDevice1.MBus_InTlg2[0,i];

 j = j + 1;

 ENDFOR;

 ModbusMaster1.ModbusDevice1.MBus_Flags = 203;

 Modbus_step = 0;

ENDCASE;

Let’s reiterate that the fb_MBusDevice function block determines the occasion when messages

are sent and when read data are accepted via the Command parameter. The algorithm for value 2

(sending data) gets simplified to start the algorithm described above by setting the Modbus_step

variable to 1. The algorithm for value 3 (data handover) is completely deleted as the data are
handed over in the MODBUS reading algorithm in step 9. The resulting code for processing control
values:

CASE MBusCommand OF

 2:

 Modbus_step = 1;

 MBusCommand = 1;

 3:

 MBusCommand = 1;

endcase;

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 16/18

4.1.3 Sample application

The application note includes a sample application designed for communication with meters via the
MODBUS RTU and MODBUS TCP protocols. Every communication uses three instances of the
fb_MBusDevice function block.

Individual communications are divided into subroutines that are called from the periodic process
with a period of 100 ms. Communication via the communication object is allowed by setting the
AutomatRun local variable to a positive, non-zero value. Reading as such is launched by a

synchronisation bit from the SyncMark1 local block. By default, the communication is to occur

every hour. The frequency of the reads can be changed by adjusting the values of parameters of
the SyncMark1 block.

More information on the SyncMark block can be found in the DetStudio IDE help.

The sample application is attached to the application note as the “mbus_p2_cz_xxx.dsox” file. This
project has been created for control system AMR-OP87 RevA. However, it can be modified to suit
any control system fitted with the Ethernet interface using the DetStudio menu “Tools / Change
station…”.

Caution
The sample application was designed for DetStudio 2.2.43 or newer!

COMMUNICATION IN M-BUS NETWORK (GEN2)

 17/18 ap0062_ap_en_002

5 Technical support
For all information regarding the communication in a network of the M-Bus in AMiT control
systems, please contact AMiT Technical Support. Technical support can be contacted preferably
by e-mail at support@amit.cz

COMMUNICATION IN M-BUS NETWORK (GEN2)

ap0062_ap_en_002 18/18

6 Notice
In this document, AMiT, spol. s r. o. provides information as it is, and the company does not
provide any warranty concerning the contents of this publication and reserves the right to change
the documentation content without any obligation to inform anyone or any authority.

This document can be copied and redistributed under the following conditions:

1. The whole text (all pages) must be copied without making any modifications.

2. All redistributed copies must retain the AMiT, spol. s r. o. copyright notice and any other notices
contained in the documentation.

3. This document must not be distributed for profit.

The names of products and companies used herein may be trademarks or registered
trademarks of their respective owners.

	1 M-Bus
	1.1 Basic characteristics
	1.2 Physical layer
	1.3 Frame format
	1.3.1 Frame fields description
	1.3.2 Usage of frames

	2 Communication of control systems via M-Bus
	2.1 HW parametrisation
	2.2 SW parametrisation
	2.2.1 Function block fb_MBusDecode
	2.2.2 Function block fb_MBusDevice
	2.2.3 Usage of function block fb_MBusDevice

	3 Sample application
	4 Appendix A
	4.1 Communication via MODBUS protocols
	4.1.1 HW parametrisation
	4.1.2 SW parametrisation
	4.1.3 Sample application

	5 Technical support
	6 Notice

