
AP0051
APPLICATION NOTE

 1/31

Copyright (c) 2021, AMiT
®
, spol. s r.o.

amitomation.com

Communication in the Poseidon Wireless System

Abstract

A description of communication of stations made by AMiT with Poseidon wireless network
peripherals made by ENIKA.CZ.

Author: Petr Latina, Zbyněk Říha
Document: ap0051_ap_en_003.pdf

Attachments

File contents: ap0051_ap_en_002.zip

poseidon_p1_en_002.dsox Examples of algorithms for the operation of transmitters and
receivers.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 2/31

Contents

Contents ... 2
Revision history .. 3
Related documentation .. 3

1 Definitions of terms ... 4

2 Poseidon system basic properties and usage rules ... 5

2.1 Using the 868 MHz frequency band ... 5
2.2 Wireless System Responses ... 5
2.3 Using control functions of the Poseidon system .. 5
2.4 Unique device ID .. 6
2.5 Security and reliability .. 6
2.6 Reach ... 6

3 AMiT station in the Poseidon system .. 7

3.1 Communication type .. 7
3.2 Communication time sequence, priority ... 7

4 Creating a communication application in the Poseidon system 9

4.1 Definition of Poseidon communication in the project ... 9
4.2 Definition of peripherals ... 11
4.2.1 Properties of on-screen objects ... 12

Displaying analogue values ... 12
Settings analogue values ... 13
Displaying binary values .. 14
Setting binary values .. 15

4.2.2 Parameters of objects in processes ... 16
Processing an analogue value from a transmitter and sending to a receiver 16
Processing a wireless button press .. 17
Controlling shutters .. 17

4.2.3 Using screen controls in combination with processes .. 17
State of a control based on the real state of a peripheral output 17

4.3 Establishing a link between the AMiT station and peripherals ... 20
4.3.1 Poseidon Asistent SW.. 20
4.3.2 Pairing mode .. 21

Pairing receiver peripherals ... 21
Pairing transmitter peripherals ... 22

4.4 Overwriting the application ... 24

5 Communication diagnostics ... 26

5.1 Signal strength ... 26
5.2 Status of communication with peripherals .. 26

6 List of supported peripherals ... 27

7 Universal applications ... 29

8 Technical support .. 30

9 Warning ... 31

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 3/31 ap0051_ap_en_003

Revision history

Version Date Changes by Changes

001 29. 07. 2014 Latina Petr New document

002 27. 01. 2021 Říha Zbyněk Updated according to DetStudio v 2.x, document
structure changed.

003 12. 02. 2021 Říha Zbyněk Links in chapters 4.4 and 7 edited.

Related documentation

1. Help for the DetStudio development environment – Help for IDE
file: Ovladani_en.chm

2. Help tab for the DetStudio development environment – Help for EsiDet
file: Esidet_en.chm

3. AMR-CP24/01 – Communication unit – Operation manual
file: amr-cp2401_g_en_xxx.pdf

4. AMR-CP44/DM RevA – Communication unit – Operation guide
file: amr-cp4xdm_reva_g_en_xxx.pdf

5. AMR-CP46/DM RevA – Communication unit – Operation manual
file: amr-cp4xdm_reva_g_en_100.pdf

6. AMR-OP70RHP/xx – Programmable on-wall controller – Operation manual
file: amr-op70rhpxx_g_en_xxx.pdf

7. AMR-OP71RHP/xx – Programmable on-wall controller – Operation manual
file: amr-op71rhpxx_g_en_xxx.pdf

8. AMR-OP87/Pxx– Graphic control HMI – Operation manual
file: amr-op87pxx_g_en_xxx.pdf

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 4/31

1 Definitions of terms

Poseidon®
A wireless network operating at the frequency of 868 MHz; developed by ENIKA.CZ.

Poseidon system
A complex of peripherals communicating in the Poseidon wireless network.

Transmitter
A peripheral of the Poseidon system transmitting commands (e.g. press of a button, transmitted
value of a physical quantity sensor – e.g. temperature).

Receiver
A peripheral of the Poseidon system processing the commands received from a transmitter.

ID
A unique identification number of each element in the Poseidon system.

EsiDet
A part of the DetStudio development environment used to create applications for AMiT
programmable controllers.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 5/31 ap0051_ap_en_003

2 Poseidon system basic properties and usage rules
The Poseidon wireless system offers some new options in the field of measurement and control. It
is however necessary to take into account certain limitations and properties that do not occur in the
classic “wired” automation.

2.1 Using the 868 MHz frequency band

The Poseidon system works in the 868 MHz public frequency band and its use is subject to
specific rules. The rules are defined in the General Authorisation No. VO-R/10/05.2014-3 on use of
radio frequencies and on operation of short-range devices, issued by the Czech Telecommu-
nication Office. Technical parameters show e.g. that the station on a frequency of 868 MHz with a
maximum radiated power of 25 mW e.r.p. (Effective radiated power), can use the band with duty
cycle ≤ 1.0 %. The duty cycle is the portion of time when the device is transmitting at any time in
one hour. Put in layman’s terms, it is not possible to occupy the frequency with the transmitting
signal indefinitely. That is why all elements of the Poseidon system including the communication
unit provide that the duty cycle limit is met automatically and will not allow the user to occupy the
band excessively, whether or not intentionally.

2.2 Wireless System Responses

As the previous paragraph shows, a radio channel cannot be viewed like a “wired” connection with
an unlimited data stream. Transmitters of the Poseidon system transmit messages in a very short
time interval, about 5 ms, immediately upon occurrence of a given event (pressing a button,
sending the measured value of temperature, for example temperature, etc.). Conversely, there are
repeated requests to read status of some peripherals (position of shutters, dimmer value) by the
superior system using stations made by AMiT. To prevent channel overload, AMiT stations have a
pre-set time interval for repeated-status reading. A similar situation with the time interval occurs
with entering values into wireless elements (DALI ballasts, dimmers, shutters control, switch relay,
etc.). To prevent repeated transmission of the same value, the AMiT station only sends the values
after they change (turn on/off or change of value by more than 1). The communication modes and
time sequence are described in more detail in further chapters.

2.3 Using control functions of the Poseidon system

The Poseidon system is designed to process basic control and regulation functions on the level of
actual system elements, without the necessity of a superior system. For example, light control can
occur directly between transmitters (on-wall buttons, keychains) and receivers (light switches,
dimmers). The response to a button press is immediate, within the range of tens of milliseconds.
The superior system still has the option to read the current status of the lighting (the light is on/off,
current intensity), and furthermore, it is also able to control the receivers from the position of a
superior function (central switch). That is why we recommend to ALWAYS use all pre-defined
higher functions of elements in the Poseidon system that can be configured in the Poseidon
Asistent programme, and to use the connection with a superior system for global control and
monitoring of status and values of wireless elements.

The following are examples of tasks the Poseidon system processes on the level of transmitters
and receivers:
◆ Controlling lights (switching on / off, dimming, scenes, etc.).

◆ Timer functions for switching lights on/off and output relays in general.

◆ Controlling roller blinds and shutters including rotation of specific slats.

◆ Lighting intensity control on the basis of measured level of outdoor light.

◆ Actions performed on the basis of motion detection from motion sensors.

◆ Using priority alarm signals for immediate device response (e.g. protecting the blinds from

strong wind).

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 6/31

2.4 Unique device ID

Each peripheral in the Poseidon system has its unique identification number (ID) that is
assigned to it during production and is not customisable by the user. The links between the
peripherals are related to specific IDs and therefore when peripherals change, it is necessary to
change these links as well. The unique ID increases safety of the wireless system operation and
helps with identification of individual peripherals.

The ID of each Poseidon peripheral is stated on a sticker delivered along with the given peripheral.
AMiT stations have the sticker next to the Poseidon interface connector. IDs can be also read via
the Poseidon Asistent application (see chapter 4.3.1 “Poseidon Asistent SW”).

2.5 Security and reliability

When transmitting in the given frequency band, data is freely accessible in the entire transmission
range. That is why the Poseidon system uses several types of coding and data transmission
security measures in its protocol; to increase the transmission reliability and mainly to prevent
unauthorised interference into the station controls. Furthermore, the Poseidon Asistent
parametrisation programme also includes procedures and functions that allow “invisibility” of given
peripherals in the projects, and password protection against unauthorised use. We recommend
you pay careful attention to this area.

2.6 Reach

Each element of the Poseidon system is designed to provide reliable data transmission into the
range of 150 m in free space. In case of using the system accessories to the peripherals, we can
guarantee range of up to 3 km. Actual range is substantially lower in practice, and it depends on
the number of obstacles and material through which the signal travels as well as on the intensity of
potential local interference from other sources. The function of signal repeater can be used
conveniently in each receiver powered from the network.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 7/31 ap0051_ap_en_003

3 AMiT station in the Poseidon system

AMiT station in the Poseidon system may act simultaneously as transmitter and receiver, i.e. it may
transmit commands, queries on the device output status or receive information from the network
e.g. in the form of analogue values (temperature, humidity).

AMiT stations can:
◆ mediate the data transfer between the superior system and the Poseidon system,

◆ act as the superior system for the Poseidon network.

3.1 Communication type

Button pressing emulation
Using the button pressing emulation, the AMiT station is able to send a command in the same way
as a physical transmitter (a key-chain button etc.). The AMiT station therefore acts directly as an
ENIKA peripheral. Use the Poseidon Asistent SW (see chapter 4.3.1 “Poseidon Asistent SW”) to
set the reaction of a selected peripheral to a button press emulated in an AMiT station.

Commanding the receivers
Output status of peripherals that allow receiving commands from AMiT stations can be changed.
The difference between commanding mode and the button press emulation-based control is that
the controlled peripheral can only be commanded in the “basic mode”. Peripherals in the “basic
mode” perform functions predefined by the manufacturer, e.g. a peripheral with a relay output
would perform the On/Off function. In the commanding mode, it is impossible to use Poseidon
Asistent to set a reaction of a selected peripheral to a command issued by an AMiT station.

Receivers and queries
Peripherals that allow command receiving also allow sending the current output status (or value)
upon a query or automatically. Again, this functionality depends on the firmware in a specific
peripheral.

Processing received messages
During communication, messages received from transmitters are processed. The received
messages may contain the following types of values:
◆ analogue value (e.g. temperature, humidity, etc.),

◆ percentage value ranging from 0 % to 100 %,

◆ binary value (e.g. status occupied = True for a movement sensor or an output state of a relay =

True),

◆ button status on the physical transmitter (e.g. pressed = True).

3.2 Communication time sequence, priority

The following text describes the communication time sequences and priorities in commands and
queries in terms of the AMiT station. Time sequences are selected on the basis of
a recommendation from the Poseidon communication creator, the ENIKA.CZ company.

Commanding
Commands have the highest priority; they may entail a button press emulation or an issued
command e.g. to control a relay On / Off. This type of request gets performed practically
immediately. If more requests occur, they enqueue and get performed one by one.

The time interval between executing two or more commanding requests is 100 ms. If there is no
response from the commanded peripheral after sending a specific command, a Timeout is
assessed and for 5 s no other command is transmitted (the devices wait for the “air to clear”).
Then, another command can be transmitted.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 8/31

Caution!
The commanding mechanism watches for a change in the value to be sent automatically. If there is
no change by value 1 in comparison to the previous value, the command is not transmitted. That
ensures the same value will not be transmitted over and over again.

Queries
If all commands are executed, individual peripherals are queried about their status or output
values. Queries have a lower priority. A “List” of queried peripherals is created automatically, in
the order the individual objects enter into the project for the AMiT station, see chapter 4.2
“Definition of peripherals”.

The query requests are transmitted in sequence for individual peripherals in the same order they
enter the list of queried devices. After a query is performed for the last peripheral, the query
request cycle starts again from the first peripheral on the list.

The time interval between individual queries is 1 s. If there is no response from the peripheral after
sending a specific query, Timeout is evaluated and for the peripherals wait for 5 s for the “air to
clear”. Then, another query can be transmitted.

Note:
At the time of publication of this application note, the Poseidon protocol allows for one query per
one output of a specific peripheral; i.e. if a queried peripheral has 8 relay outputs, its query will take
8 s.

Messages from transmitters
Similar to a list of queried peripherals, there is also a list of peripherals from which a message
containing e.g. analogue value is expected. This list is created automatically upon creating a
project for the AMiT station. These messages are generated by pressing a button or by a
temperature or humidity sensor or by a contact state transmitter, etc. The messages are ready for
immediate use after recording, e.g. in the form of a measured temperature value.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 9/31 ap0051_ap_en_003

4 Creating a communication application in the
Poseidon system

In order for the AMiT station to communicate in the Poseidon system successfully, an application
must be created (according to technical requirements) in DetStudio / EsiDet. It is generally
recommended to send queries between peripherals without using the AMiT station as an
intermediary (sending a query first to the AMiT station which then forwards it somewhere else).
This leads to unnecessary latency when processing queries. A more effective approach is to create
links directly between the peripherals – the AMiT station only receives reports on the measured
temperature and the temperature setpoint; it can also affect the state of the controlled peripherals.

All examples from this chapter are also included in the attachment ap0051_ap_en_xxx.zip.

Successful establishment of communication in Poseidon network can be divided into several steps:
◆ definition of Poseidon communication in the project,

◆ definition (emulation) of peripherals that are to be communicated with,

◆ establishment of the link between the AMiT station and peripherals.

Creating a project is the same for the whole portfolio of the AMiT company that contains the
Poseidon interface. Within the scope of this application note, the communication will be
programmed for graphic control HMI AMR-OP87/Pxx with a communication module for the
Poseidon 868 MHz system – AW-P868A.

4.1 Definition of Poseidon communication in the project

To define Poseidon communication, it is necessary to insert a Poseidon object into the project. It

is the main communication object of the Poseidon network. It is possible to insert it from the list of
communication objects window. The “Add object” window is accessible through the context menu
of the “Communication” node.

Fig. 1 – Adding objects into the project

After selecting “Add object”, the “Objects and blocks in libraries” list opens; select the Poseidon

object.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 10/31

Fig. 2 – Selection of the Poseidon object

After confirming the selection (by clicking “OK” or by double-clicking the object), the object appears
in the “Project” window under “Communication”.

Fig. 3 – Poseidon object in the “Communication” section

Left-clicking the Poseidon object opens the “Properties” window listing the properties of the

communication object. Settings can be left with the default values (the AsistentEnable

parameter = True) so that it is possible to use the HMI with “Poseidon Asistent”. This piece of SW
was created by the ENIKA company and it is used for management of the Poseidon wireless
network (see chapter 4.3.1 “Poseidon Asistent SW”).

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 11/31 ap0051_ap_en_003

4.2 Definition of peripherals

The peripherals can be defined within the project in a similar way to defining the Poseidon
communication as such – via the communication object list window. To communicate within the
Poseidon network, take advantage of any of the P8x_xxx type objects from the “Poseidon Wireless
System” section.

Fig. 4 – “Poseidon Wireless System” section

The list of all available objects – including the peripherals of the Poseidon wireless network for
which the objects meant – can be found in the DetStudio Help for EsiDet.

In the sample application, communication will be occurring among these peripherals:
◆ P8 R 2 N/K – 2-channel receiver,

◆ P8 R R I – roller shades built-in receiver,

◆ P8 R DALI N – built-in receiver with a DALI output,

◆ P8 T Temp/RH – transmitter of temperature and humidity,

◆ P8 T 4 – 4-channel on-wall transmitter.

Based on information stated in the DetStudio Help for EsiDet, it is first necessary to include the
following objects into the project:
◆ P8R_Relay for controlling the 2-channel receiver,

◆ P8R_Roll for controlling the roller shades receiver,

◆ P8R_Dimm for the built-in receiver with a DALI output,

◆ P8T_Senzor for the temperature and humidity transmitter (one object per value),

◆ P8T_4 for the 4-channel on-wall transmitter.

The roller shades transmitter will be also controlled by buttons emulated by the HMI. To emulate
the buttons, it is necessary to insert the P8E_KBD object.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 12/31

Fig. 5 – Definition of Poseidon network peripherals

Right-click the individual objects to open the “Properties” window to adjust communication settings.

It is necessary to set the channel count to objects P8R_Relay and P8R_Dimm (according to the

pairing method – see chapter 4.3 “Establishing a link between the AMiT station and peripherals”)
so that it corresponds to physical channels present on P8 R 2 N/K and P8 R DALI N. The count of
channels is given by the ChannelCount parameter. If the parameter contains a different number

of channels, the communication will not work.

Note
It is possible to set the FailureThreshold parameter to P8R_xxx objects – it is the number of

undelivered messages to the peripheral it takes for the communication failure state to occur.
Furthermore, for P8T_xxx objects (that actively send data without user input), it is possible to set

the TimeOut parameter which determines the maximum waiting time for a message form the

peripheral.
Both parameters can be left in the default state.

After inserting objects, it is possible to work with their parameters both via the screens and the
processes.

4.2.1 Properties of on-screen objects

When the panel is required to only display data – i.e. it is not supposed to process the data on the
control level – received from the peripherals or to send commands (e.g. as a reaction to button
press), it is not necessary to programme anything on the process level. It is sufficient to only use
the programming and parametrisation of visualisation.

Displaying analogue values

To display analogue values received from a transmitter, use the NumericView control. Typically,

this would be used to display temperature, humidity or the current position of roller shades or
blinds.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 13/31 ap0051_ap_en_003

After inserting a NumericView control onto the screen, assign the corresponding object parameter
to the Variable parameter of the NumericView control (e.g. the Value parameter of the

P8T_Sensor1 object for temperature or the ActualPosition parameter of the P8R_Roll

object for the current position of roller shades or blinds). Other parameters of the NumericView

control can be customised to meet the project requirements.

Fig. 6 – Setting NumericView control parameters

Settings analogue values

To set an analogue value, use the NumericEdit control. Typically, this would be used to set

lighting intensity or the current position of roller shades or blinds.

After inserting a NumericEdit control onto the screen, assign the corresponding object

parameter to the Variable parameter of the NumericEdit control (e.g. the Out0 parameter of

the P8R_Dimm1 object for setting the lighting intensity via DALI). Other parameters of the

NumericEdit control can be customised to meet the project requirements.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 14/31

Fig. 7 – Setting NumericEdit control parameters

Displaying binary values

To display binary values received from a peripheral, use the BitSwitchView control. Typically,

this can be used to view the state of relay or motion detection information from a PIR sensor.

After inserting a BitSwitchView control onto the screen, assign the corresponding object

parameter to the Variable parameter of the BitSwitchView control (e.g. the ActualOut0

parameter of the P8T_Relay1 object to display the relay 1 state). Other parameters of the

BitSwitchView control can be customised to meet the project requirements.

Fig. 8 – Setting BitSwitchView control parameters

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 15/31 ap0051_ap_en_003

Setting binary values

Setting of binary values can be divided to two groups:
◆ commanding,

◆ button pressing emulation.

Commanding

Commanding uses the P8R_xxx object that is directly meant – within the scope of DetStudio – for

controlling the selected peripheral (e.g. P8R_Relay object is specifically meant to operate the

P8 R 2 N/K peripheral).

To set a required state of the binary output via an on-screen control, use BitSwitchButton.

After inserting a BitSwitchButton control onto the screen, assign the corresponding object

parameter to the Variable parameter of the BitSwitchButton control (e.g. the Out0

parameter of the P8T_Relay1 object to set the desired relay 1 state on the P8 R 2 N/K

peripheral). Other parameters of the BitSwitchButton control can be customised to meet the

project requirements.

Fig. 9 – Setting BitSwitchButton control parameters

Button pressing emulation

Emulation of button presses uses the P8E_KBD object for communication. It simulates the press of

a wireless button. The AMiT station therefore acts as a wireless button when the P8E_KBD object

is used. The button press emulation function can be used for example for controlling roller shades
or blinds via graphic controls placed on the screen of the AMiT station.

It is not convenient to use BitSwitchButton control to work with the P8E_KBD object. After

setting the required behaviour of the wireless button, it is necessary to set a flag to the P8E_KBD

that will send a corresponding message to the Poseidon network. The function can be
implemented on screens within the DetStudio using only controls that support the so-called
scripting (the BitSwitchButton control doesn’t support scripts). It is, however, possible to use

the Button or ToggleButton controls.

After inserting a Button control onto the screen, it is possible to use its “OnButtonDown” event. To

switch to the list of events of the Button control, press the yellow lightning bolt icon in the

“Parameters” window (when a Button control is selected).

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 16/31

Fig. 10 – Button control parameters

Pressing the “…” button creates a corresponding event and switches the main window to the
scripting section.

Insert the required code into the pre-defined events.

event Button1_OnButtonDown()

 Poseidon.P8E_KBD1.OFF1 = true; // Information about the bottom left button being

pressed

 Poseidon.P8E_KBD1.ON1 = false; // Cancels the information about the upper left

button being pressed

 Poseidon.P8E_KBD1.Transmit = true; // Issue to send the information about the

button press

end;

event Button2_OnButtonDown()

 Poseidon.P8E_KBD1.OFF1 = false; // Cancels the information about the bottom left

button being pressed

 Poseidon.P8E_KBD1.ON1 = true; // Information about the bottom left button being

pressed

 Poseidon.P8E_KBD1.Transmit = true; // Issue to send the information about the

button press

end;

The reaction to an emulated button press is given by the peripheral that was linked to the emulated
buttons. In case of a link to a P8 R R I (blinds or shutter control), this may cause for example
closing / opening the shutters or blinds. The function is given by the settings in the Poseidon
Asistent SW (see chapter 4.3.1 “Poseidon Asistent SW”).

4.2.2 Parameters of objects in processes

Using the parameters of the Poseidon communication objects in processes is similar to using other
communication objects or variables.

Processing an analogue value from a transmitter and sending to a receiver

To process measured value or humidity, it is possible to only call the Val parameter of the

P8T_Sensor1 (measured value) or P8T_Sensor2 (measured humidity) objects. The quantity that

is transferred via individual P8T_Sensorx objects is given by the type of the wireless transceiver

and by the number of quantities that it sends into the network (see section “Pairing transmitter
peripherals” in chapter 4.3.2 “Pairing mode”).

Should the station switch a wireless relay based on the measured temperature, it is possible to
implement this function by programming the Hyst module as follows:

Hyst1(In = Poseidon.P8T_Sensor1.Val, Out => Poseidon.P8R_Relay1.Out1);

The above-mentioned code causes the P8 R 2 N/K peripheral relay 2 to close when the
temperature measured by the wireless temperature transmitter rises above the limit (defined by the
Limit parameter of the Hyst1 block) increased by a half of the value set in the Hysteresis

parameter of the Hyst1 block.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 17/31 ap0051_ap_en_003

To get the real state of the output, use the ATSO or OutputsRead parameter. ATSO is True when

the peripheral sent the current states of its outputs. OutputsRead is True when all output states of

the given peripheral are read using queries (see DetStudio Help for EsiDet).

Current states of outputs are saved to ActualOutx parameters.

Using the OutputsRead and ActualOutx parameters is convenient e.g. when a Poseidon

network peripheral is controlled from multiple places at the same time (typically a wireless button
and an AMiT station).

Processing a wireless button press

Upon a button press or release, the button transmitters send information about a button being
pressed or released, respectively. When the user presses a button for a short time, it may happen
that the AMiT station does not register the event. That is why it is recommended to place the
button press processing into a process with a period of 100 ms or less. Furthermore, it is quite
common to use one button of a peripheral as an ON switch and another button of the peripheral as
an OFF switch. This needs to be treated by the code in the station.

An example of code addressing the issue of ON and OFF switch from a single peripheral – P8T_4

in this case – is below.

RS1(

 Set = Poseidon.P8T_41.ON1,

 Reset = Poseidon.P8T_41.OFF1,

 Output => @Status

);

The @Status alias is True or False depending on whether the user pressed the upper left or

bottom left button of the 4-button transmitter.

 Controlling shutters

AMiT stations can control shutters by two methods:
◆ by emulating a button (see section “Button pressing emulation” in chapter 4.2.1 “Properties of

on-screen objects”),

◆ or by commanding (sending the required value of opening / pitch of the shutters).

Sending the required value of opening / pitch of the shutters via the processes can be used e.g.
when the shutters need to react to the current position of the sun. The position of the Sun can be
gained by using the Astro object (see the DetStudio Help for EsiDet). The relationship between

the position of the Sun and the shutters is completely determined by the user algorithm.

4.2.3 Using screen controls in combination with processes

In some cases, it is convenient to use screen controls in combination with other functions.
Typically, it can be used to change the state of a control on the screen (e.g. a switch) based on the
real state of the peripheral output (e.g. state of a relay).

State of a control based on the real state of a peripheral output

Switching based on the real state can be used e.g. when the peripheral is controlled from more
than one place (wireless button, PIR sensor, AMiT station etc.). When implementing the control
status change based on the current state of a peripheral output (ActualOutx parameter), it is not

possible to use just the BitSwitchButton used in section “Setting binary values” of chapter

4.2.1 “Properties of on-screen objects”. It is necessary to use e.g. the ToggleButton or

SelectButton control (or similar ones) that can be also controlled via the screen script. It is

furthermore necessary to programme a function that will – after waiting for a pre-determined
amount of time after a command – read the current state of the output. It will then optionally

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 18/31

change the state of the on-screen button. It is also possible to use one TimerOff block and two

aliases for the same task.

Controlling a binary output with reading of real state

To control a binary output, use the ToggleButton control. After inserting a control onto the

screen, it is possible to use its “OnToggleButtonDown” and “OnToggleButtonUp” events. To switch
to the list of events of the ToggleButton control, press the yellow lightning bolt icon in the

“Parameters” window (when a ToggleButton control is selected).

Fig. 11 – ToggleButton control events

Pressing the “…” button creates a corresponding event and switches the main window to the
scripting section.

Insert the required code into the pre-defined events. In case of the sample application, a flag
(needs to be defined as alias @Change in the process) is set about the request for a state change

and the required state of the relay (flag about the change request will be used for launching the
TimerOff block timer).

event ToggleButton1_OnToggleButtonDown()

 Process1.@Change = true; // Setting the change flag

 Poseidon.P8R_Relay1.Out0 = true; // Setting the required relay state

end;

event ToggleButton1_OnToggleButtonUp()

 Process1.@Change = true; // Setting the change flag

 Poseidon.P8R_Relay1.Out0 = false; // Setting the required relay state

end;

Furthermore, in the periodic process, it is necessary to define a TimerOff block that will delay the

trailing edge of the @Change alias. The flag is therefore set with every state change caused by the

HMI and it is set to False within the process immediately afterwards. During the @Change alias

trailing edge delay (the length can be set via the Delay parameter), the @P8R2NK_CH1 alias will

be set according to the required relay state. When the timer is ended, the @P8R2NK_CH1 alias

state will be set according to the real state of the relay.

TimerOff1(Input = @Change); // Delay of the changes flag

If TimerOff1.Out then

 @Change = false; // Cancelling the change flag

 @P8R2NK_CH1 = Poseidon.P8R_Relay1.Out0; // Alias according to the required relay

state

Else

 @P8R2NK_CH1 = Poseidon.P8R_Relay1.ActualOut0; // Alias according to the real

relay state

 If Poseidon.P8R_Relay1.ActualOut0 != Poseidon.P8R_Relay1.Out0 then

 // Synchronisation of the current state with the request from the panel

 Poseidon.P8R_Relay1.Out0 = Poseidon.P8R_Relay1.ActualOut0;

 EndIf;

EndIf;

The @P8R2NK_CH1 alias will be used for displaying the state of the on-screen button. After

changing the required relay state, the button displays the required relay state (for the duration of
the TimerOff Delay). After the pre-set time elapses, the displayed button state will correspond to

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 19/31 ap0051_ap_en_003

the current relay state. This functionality is addressed by the following code. It is necessary to
insert the code into the “OnRefresh” event of the screen where the button is inserted.

ToggleButton1.Checked = Process1.@P8R2NK_CH1;

The code above also deals with a situation when the relay state gets changed by e.g. a wireless
button. The button on the panel automatically changes its status according to the relay state set by
the wireless button.

Controlling an analogue output with reading of real state

To control the analogue output by buttons, use the SelectButton control.

After inserting the control on the screen, it is possible to define:
◆ number of buttons,

◆ the value that the button switching depends on,

◆ images that are to display when a button is pressed / released (not necessary).

Fig. 12 – Setting buttons of the SelectButton control

After confirming the defined buttons by pressing “OK”, an event will be created for each button.
These events will look like this: “SelectButton1_ItemX_OnPress()”. The following process is similar
to controlling a relay via a ToggleButton.

Insert the required code into the pre-defined events. In case of the sample application, a flag
(needs to be defined as alias @ChangeDali in the process) is set about the request for a state

change and the required state of the relay (flag about the change request will be used for
launching the TimerOff block timer).

event SelectButton1_Item0_OnPress()

 Process1.@ChangeDali = true;

 Poseidon.P8R_Dimm1.Out0 = 0.0;

end;

event SelectButton1_Item1_OnPress()

 Process1.@ChangeDali = true;

 Poseidon.P8R_Dimm1.Out0 = 50.0;

end;

event SelectButton1_Item2_OnPress()

 Process1.@ChangeDali = true;

 Poseidon.P8R_Dimm1.Out0 = 100.0;

end;

Furthermore, in the periodic process, it is necessary to define a TimerOff block that will delay the

trailing edge of the @ChangeDali alias. The flag is therefore set with every state change caused by

the HMI and it is set to False within the process immediately afterwards. During the @ChangeDali

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 20/31

alias trailing edge delay (the length can be set via the Delay parameter), the ActualOut variable

value will be set according to the lighting intensity setpoint. When the timer ends, the ActualOut

variable value will be set according to the real value of lighting intensity.

TimerOff2(Input = @ChangeDali); // Delay of the change flag

If TimerOff2.Out then

 @ChangeDali = false; // Cancelling the change flag

 ActualOut = Real_To_Int(Poseidon.P8R_Dimm1.Out0);

Else

 ActualOut = Real_To_Int(Poseidon.P8R_Dimm1.ActualOut0);

EndIf;

The ActualOut value will be used for displaying the state of the on-screen buttons. To change

the required value of lighting intensity, the status of buttons will be set according to the required
lighting intensity (during the TimerOff block Delay). After the pre-set time elapses, the button

state will correspond to the current lighting intensity. This functionality is addressed by the following
code. It is necessary to insert the code into the SelectButton “OnRefresh” event on the screen

where the button is inserted.

SelectButton1.Value = Process1.ActualOut;

The code above also deals with a situation when the required value state gets changed by another
wireless peripheral. The states of the buttons on the HMI are automatically changed according to
the lighting intensity set by another wireless peripheral (only when the set intensity equals to the
value set in the SelectButton control).

4.3 Establishing a link between the AMiT station and peripherals

As stated above, each peripheral of the Poseidon system has its unique ID defined by the
manufacturer. In order to operate the peripheral using the communication unit correctly, this ID
must be filled in the appropriate objects and a link with the AMiT station must be entered into the
receiver memory.

The link with the AMiT station can be entered into the peripheral in two ways:
◆ using the Poseidon Asistent SW from the ENIKA.CZ company,

◆ using the pairing mode.

4.3.1 Poseidon Asistent SW

The Poseidon Asistent SW can, among other things, read IDs of peripherals, create links to them
and it enables advanced settings of them. When the links are established via Poseidon Asistent, it
is necessary to set the read IDs into the corresponding parameters of P8x_xxx objects in the

DetStudio project.

A PC with a Poseidon Asistent SW copy installed can connect to the wireless network via:
◆ a USB configuration transceiver – P8 TR USB – made by ENICA.CZ,

◆ an AMiT station with Ethernet and Poseidon interfaces.

That means that any AMiT station with both an Ethernet interface and a Poseidon interface
can be used not only as a communication gateway for the Poseidon network of peripherals but
also as a configuration gateway for the Poseidon network.

To enable communication of Poseidon Asistent through an AMiT station, the station needs to be
running an application containing a Poseidon object with the AsistentEnable parameter set to

True.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 21/31 ap0051_ap_en_003

Caution
While a PC is connected to the AMiT station via Poseidon Asistent, communication with Poseidon
peripherals in the network, as defined in the station programme, stops. It will resume only after the
Poseidon Asistent SW stops communicating.

Stations without an Ethernet interface (e.g. AMR-OP70RHP) cannot function as a configuration
gateway for Poseidon Asistent.

More information on the Poseidon Asistent SW is available at www.enika.cz.

If the Poseidon Asistent SW is not available, the link between the AMiT station and peripherals can
be made through the process described below.

4.3.2 Pairing mode

Pairing receiver peripherals

Pairing can be illustrated on objects P8R_Relay and P8R_Roll. Before the actual pairing, an

application generated with the given objects needs to be installed in the AMiT station. The
receivers mustn’t be linked to the AMiT station and they need to be visible in the Poseidon system
at the moment of pairing (see the user’s guides for the individual peripherals from the ENIKA.CZ
company).

The pairing process is performed as follows.

◆ Connect both the AMiT station and the receiver to the power supply.

◆ In the DetStudio project, open the “Inspector 1” panel via the “Debugging / Inspector 1” menu.

Insert the P8R_Relay1 object into the open “Inspector 1” window (by pressing the “+” button).

Fig. 13 – Object P8R_Relay1 and some of its parameters in the “Inspector 1” window

◆ In the following step, press and release a programming button 1× on the receiver (see the

User's Guide for the individual peripherals by the ENIKA.CZ company) – this sets the receiver

into programming mode.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 22/31

◆ After releasing the programming button on the receiver, the InitDevice parameter of the

P8R_Relay1 object is set to “1” (True) in the “Inspector 1” window. That action launches the

pairing sequence on the AMiT station side and in case the pairing is successful, the ID

parameter shows the read value of the receiver ID. The value corresponding to the physical

number of relay output is also automatically entered into the ChannelCount property, see the

following figure.

Fig. 14 – Read ID of the receiver after a successful pairing procedure

It is now possible to communicate with the receiver in the Poseidon network, i.e. to
monitor / change relay output statuses, e.g. directly in the “Inspector 1” window, or the status can
be changed using the screens or algorithms recorded in one of the periodic processes and monitor
the changes with the Inspector.

Pairing transmitter peripherals

Pairing can be illustrated on objects P8T_Sensor. Before the actual pairing, an application

generated with the given objects needs to be installed in the AMiT station.

The pairing process is performed as follows.

◆ Connect the AMiT station to the power supply. Transmitters are usually battery-powered; the

battery has to be inserted in the transmitter and has to have a sufficient voltage level.

◆ In the DetStudio project, open the “Inspector 1” panel via the “Debugging / Inspector 1” menu.

Insert the P8T_Sensor1 object into the open “Inspector 1” window (by pressing the “+” button).

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 23/31 ap0051_ap_en_003

Fig. 15 – Object P8T_Sensor1 and its parameters in the “Inspector 1” window

◆ The InitDevice variable of the P8T_41 object is set to value “1” (True) in the “Inspector 1”

window. Therefore, an incoming pairing sequence sent by the transmitter is expected.

◆ Activate the pairing sequence on the side of the transmitter (see the documentation for the

given transmitter available at www.enika.cz). In case of the temperature and humidity

transmitter, press the bottom button on the transmitter (two LEDs light up on the transmitter)

and then press the top button (the pairing sequence is sent and LEDs flash a couple of times).

◆ If the pairing is successful, the ID parameter will again be filled by the receiver ID, see the

following figure.

Fig. 16 – Filled transmitter ID after a successful pairing procedure

Now it is possible to communicate with the given transmitter in the Poseidon system, e.g. monitor
status of individual buttons directly in the “Inspector 1” window.

When it is necessary to pair a peripheral that provides the Poseidon network with more than one
type of information, it is necessary to insert that many communication objects into the project as
many types of information the peripheral provides the network with. Each other object that

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 24/31

represents further quantities of the same peripheral needs their address to be set to a value 1
higher than the previous one. As an example, when there is a P8 T TempRh peripheral that
provides information about temperature and humidity, there needs to be an extra P8T_Sensor

object for humidity and its address need to be 1 higher (in this case 8191149) than the one for
temperature.

Fig. 17 – Filled transmitter ID after for further quantity

Note
When transmitter IDs are known, it is possible to enter them in to the ID parameter in the

“Properties” panel already when creating the project. It is then unnecessary to perform the pairing
sequence manually. The AMiT station will receive queries from peripherals with corresponding IDs
automatically.

The pairing mode can be implemented using the aforementioned parameters directly on the HMI
screens. In that case, there won’t be no need to use DetStudio for correct pairing of AMiT stations
with Poseidon peripherals – the pairing sequence will be performed using only the HMI screens.
See a sample screen – “Screen2” – in example poseidon_p1_en_02.dsox included in the
application note package.

4.4 Overwriting the application

If changes in the user application are necessary and saving the existing object parameter settings
is required (such as peripheral ID, number of peripheral channels, etc.) for further use after the
application is overwritten, use one of the following procedures.

◆ Enter ID (number of channels, etc.) into the appropriate parameter box in the “Properties”

window for individual objects. See the following fig. displaying the “Properties” window for the

P8R_Relay1 object.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 25/31 ap0051_ap_en_003

Fig. 18 The properties windows of the P8R_Relay1 object

◆ Backup the data of the existing application from the AMiT station via the data manager and

then renew the data after overwriting the application. Further information is available in the

Help for EsiDet in chapter “Data manager”

◆ Select the “Perform backup and variables recovery in station” option. More information on this

option is available in the Help for EsiDet in section “Download application” of chapter

“/Contents/Loading the application/”.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 26/31

5 Communication diagnostics
The AMiT station uses internal functions to automatically monitor the status of the physical
communication module of the 868 MHz wireless system. If the system gets overloaded or enters
another unusual status, the communication module resets automatically.

5.1 Signal strength

Objects that operate both transmitters and receivers within the project have the RSSI parameter.

Value of this parameter states the strength of the RF signal of a message received from the given
transmitter or queried receiver.

The signal values can be classified as follows:

◆ very good > -50 dBm,

◆ satisfactory -80 dBm to -50 dBm,

◆ bad < -80 dBm.

5.2 Status of communication with peripherals

Status of communication with an operated peripheral of the Poseidon network can be assessed by
means of parameters Error and Disconnected.

Error messages of receivers

Value Significance

0 No error.

1 Unexpected type of command in response.

2 Upon initialisation – receiver type does not match the object type.

3 The output status does not match the requested status.

4 No response.

5 Unexpected channel number in response.

6 Change of the ID assigned from the application detected.

Error messages of transmitters

Value Significance

0 Battery OK.

1 Low battery.

Disconnected – error messages of transmitters

Value Significance

0 No error.

1 The transmitter has not transmitted any data for more than 10 min.

The Disconnected parameter is available only in objects operating transmitter peripherals,

except for objects P8T_4 and P8T_4x8.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 27/31 ap0051_ap_en_003

6 List of supported peripherals
The chart below states types of devices from ENIKA.CZ that can be operated by the AMiT station
in the Poseidon network using the aforementioned objects. The list has been updated on the date
of this application note.

Supported peripherals

Peripheral Object Number of
objects for the

peripheral
operation

Note

Switching receivers P8R_Relay 1 Max. 8 channels.

P8 R 1 xxx *)

P8 R 2 xxx

P8 R 4 xxx

P8 R 8 xxx

Dimmer receivers P8R_Dimm 1 Max. 4 channels.

P8 R D I xxx *)

P8 R 01-10 N

P8 R DALI xxx *)

Roller shades receivers

P8 R R xxx *) P8R_Roll 1 –

P8 R 4R S P8R_Roll4 1 –

Receivers for control of TRVs P8R_Relay

P8 R Valve N 24V 1 –

Lighting controllers **) P8T_Contact 1 Presence detection.

P8T_Percent 1 Lighting controller output.

P8T_Sensor 1 Ambient lighting intensity.

P8 TR PSMR16 (HR)

P8 TR PS HB

P8 TR PS LR xxx *)

Button transmitters *) P8T_4 1 Max. 4 buttons.

P8 T 2 xxx

P8 T 3 xxx

P8 T 4 xxx

P8 T 4a xxx

Multiple-channel button
transmitters

P8T_4x8 4 One object for the group A to D.

P8 T 4x8a xxx *)

Contact status transmitters P8T_Contact 2 One object per contact.

P8 T(R) 2C I

Transmitters of state of contacts
and demand-side management

P8T_Contact 2 One object per contact. Can only be used in the
“Individual transmitter” mode, see the user’s guide for the
peripheral.

P8 TR 2C DIN

P8 TR 2U DIN

Motion sensor switches P8T_Contact 1 –

P8 T PS W

 P8 T PSMR16/A xxx *)

Temperature transmitters P8T_Sensor 1 –

P8 T Temp xxx

Temperature and humidity
transmitters

P8T_Sensor 2 One object per physical quantity.

P8 T Temp/RH xxx *)

Transmitters of CO2,
temperature and humidity

P8TContact 1 Control of a built-in relay.

P8T_Sensor 3 One object per physical quantity.

P8 T CO2 xxx *)

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 28/31

Peripheral Object Number of
objects for the

peripheral
operation

Note

Flood sensors P8T_Contact 1 Detection of water leaks.

P8T_Sensor 1 External temperature measurement

P8 T AQ

*) Characters xxx represent further specifications of the peripheral, e.g. design (built-in, into
dropped ceiling, …) or frame design, etc.

**) In combined peripherals such as the lighting controller, using all listed objects (P8T_Contact,
P8T_Percent, P8T_Sensor) for message processing is not necessary. If it is desirable to
process e.g. only the information about lighting intensity, only the object P8T_Sensor is used.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 29/31 ap0051_ap_en_003

7 Universal applications

A communication unit application was created in cooperation with the ENIKA.CZ company – it
provides processing of a pre-defined number of peripheral (transmitters or receivers). The
application is available at www.amitomation.com in section “Solutions\Application sample
projects\”. It is sample project called “AMR-CP24 – Poseidon wireless network”.

The number of pre-defined peripherals is as follows:
◆ 40× relay receiver with up to 8 channels,

◆ 40× roller-blinds receiver,

◆ 40× dimmer receiver (also applicable: built-in dimmer, 1 V to 10 V or DALI),

◆ 25× transmitter with up to 4 buttons,

◆ 25× contact state transmitter,

◆ 40× temperature or humidity transmitter,

◆ 20× button press emulation of a single transmitter with 4 buttons.

The configuration of the actual number of devices in the given technology is performed using the
Poseidon Asistent SW. The configurations for individual devices are saved into the communication
unit using the MODBUS TCP/IP protocol. This protocol also allows reading statuses and
commanding configured peripherals. The list or registers of the MODBUS TCP/IP protocol is
included in the Poseidon Asistent SW. More information is available at www.enika.cz.

In order to read statuses and command device outputs using the AMiT superior system,
communication via DB-Net/IP is prepared in the application. The list of WIDs for operation of
individual peripherals is included in the documents accompanying the afore-mentioned application
sample project “AMR-CP24 – Poseidon wireless network”.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

ap0051_ap_en_003 30/31

8 Technical support
All information on integrating AMiT stations into Poseidon networks will be provided by the
technical support department of the AMiT company. The Technical support is best contacted via e-
mail at support@amit.cz.

COMMUNICATION IN THE POSEIDON WIRELESS SYSTEM

 31/31 ap0051_ap_en_003

9 Warning
In this document, AMiT, spol. s r. o. provides information as it is, and the company does not
provide any warranty concerning the contents of this publication and reserves the right to change
the documentation content without any obligation to inform anyone or any authority.

This document can be copied and redistributed under the following conditions:

1. The whole text (all pages) must be copied without making any modifications.

2. All redistributed copies must retain the AMiT, spol. s r. o. copyright notice and any other
notices contained in the documentation.

3. This document must not be distributed for profit.

The names of products and companies used herein may be trademarks or registered
trademarks of their respective owners.

	1 Definitions of terms
	2 Poseidon system basic properties and usage rules
	2.1 Using the 868 MHz frequency band
	2.2 Wireless System Responses
	2.3 Using control functions of the Poseidon system
	2.4 Unique device ID
	2.5 Security and reliability
	2.6 Reach

	3 AMiT station in the Poseidon system
	3.1 Communication type
	3.2 Communication time sequence, priority

	4 Creating a communication application in the Poseidon system
	4.1 Definition of Poseidon communication in the project
	4.2 Definition of peripherals
	4.2.1 Properties of on-screen objects
	4.2.2 Parameters of objects in processes
	4.2.3 Using screen controls in combination with processes

	4.3 Establishing a link between the AMiT station and peripherals
	4.3.1 Poseidon Asistent SW
	4.3.2 Pairing mode

	4.4 Overwriting the application

	5 Communication diagnostics
	5.1 Signal strength
	5.2 Status of communication with peripherals

	6 List of supported peripherals
	7 Universal applications
	8 Technical support
	9 Warning

