
AP0047
APPLICATION NOTE

 1/56

Copyright (c) 2019, AMiT
®
, spol. s r.o.

amitomation.com

Designing applications for on-wall controllers

Abstract

The Application note deals with design of user applications for small on-wall controllers
produced by the AMiT company. This document includes descriptions of procedures for
programming communication with on-wall controllers on part of the control system made
by AMiT and procedures of screen design with links to objects in a Poseidon network.

Author: Zbyněk Říha
Document: ap0047_en_03.pdf

Attachments

File contents: ap0047_en_03.zip

op70c_p1_en_01.dsox Example of application design for AMR-OP70C.

rs_p1_en_03.dso Example of operation of AMR-OP70C in the control system
(ARION).

rs_p2_en_01.dso Example of operation of AMR-OP70C in the control system
(MODBUS RTU).

op60_p1_en_01.dsox Example of operation of buttons in AMR-OP60.

op70rhp_p1_en_01.dsox Example of work with the Poseidon interface in AMR-OP70RHP.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 2/56

Contents

Contents .. 2
Revision history ... 4
Related documentation ... 4

1 Definitions of terms ... 5

2 On-wall controllers .. 6

3 Sample application design for AMR-OP70C .. 7

3.1 Creating a project .. 7
3.2 Defining internal variables ... 8
3.3 Definition of the protocol and the variables intended for communication 8
3.3.1 Communication protocol definition ... 8
3.3.2 Definition of variables for data exchange with the control system 10
3.3.3 Mapping variables into registers .. 11
3.4 Designing the AMR-OP70C the operating application of the controller 13
3.5 Screen design for AMR-OP70C... 16
3.5.1 Setting the heating mode and the fan mode .. 16
3.5.2 Showing the temperature measured by AMR-OP70C ... 18
3.5.3 Displaying static text .. 20
3.6 Generating the application for AMR-OP70C .. 22
3.7 Loading the application in AMR-OP70C .. 22

4 Operation example of AMR-OP70C in stations with NOS ... 23

4.1 Example – ARION protocol ... 23
4.1.1 Definition of AMR-OP70C in DetStudio ... 23
4.1.2 Method of communication with AMR-OP70C... 24
4.1.3 Designing a programme for communication with AMR-OP70C 24
4.2 Example – MODBUS RTU protocol ... 26
4.2.1 Definition of AMR-OP70C in DetStudio ... 26
4.2.2 Method of communication with AMR-OP70C... 28
4.2.3 Designing a programme for communication with AMR-OP70C 29

5 Extending application functions for AMR-OP70C ... 30

5.1 Setting communication parameters for AMR-OP70C on the display 30
5.1.1 Protocol type choice screen .. 30
5.1.2 AMR-OP70C address settings screen ... 32
5.1.3 Communication speed settings screen .. 34
5.1.4 Parity settings screen .. 36
5.1.5 Service menu screen ... 39
5.2 Displaying the control system time on AMR-OP70C .. 41
5.2.1 Adjusting the control system application (ARION) ... 41
5.2.2 Adjusting the control system application (MODBUS RTU) ... 41
5.2.3 Adjusting the application for AMR-OP70C ... 42
5.3 Navigating between screens ... 42

6 Appendix A .. 45

6.1 Using standalone communication objects .. 45
6.1.1 Object ArionSlave ... 45
6.1.2 Object ModbusSlave ... 46

7 Appendix B .. 47

7.1 Operation of AMR-OP60 buttons ... 47

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 3/56 ap0047_en_03

7.1.1 Keyxxx elements usage .. 47
Operating the Key element (“K_1”) .. 47
Operating the Key elements (“K_2” and “K_3”) .. 48
Operating the Key element (“K_4”) .. 49

7.1.2 Using OP60kbd with predefined buttons .. 49
7.1.3 Using OP60kbd with user-defined buttons ... 49

8 Appendix C .. 51

8.1 AMR-OP70RHP operation with the Poseidon© interface .. 51
8.1.1 Designing the Poseidon operation code .. 51
8.1.2 Screen for creating connections within the Poseidon network ... 52
8.1.3 Lighting settings screen ... 52
8.1.4 Blinds settings screen ... 53

9 Technical support ... 55

10 Warning .. 56

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 4/56

Revision history

Version Date Changes by Changes

001 04. 03. 2011 Říha Z. New document.

002 20. 04. 2012 Říha Z. Chapter 3.1.9 amended with information on
compatibility with programme SAM-PROG. Chapter
4.7 amended with the procedure of application
implementation. Related documentation amended.
Applications created in DetStudio version 1.7.2.
Images and texts modified in accordance with
DetStudio version 1.7.2.

003 25. 03. 2019 Říha Z. AP name changed, AP structure changed, document
revised according to the current behaviour of
DetStudio 2.0, controller NOA70 replaced by
controller AMR-OP70C.

Related documentation

1. Help tab in the EsiDet section of the DetStudio development environment
file: Esidet_en.chm

2. Help tab in the PseDet section of the DetStudio development environment
file: Psedet_en.chm

3. Help tab in the Tridet section of the DetStudio development environment
file: Tridet_en.chm

4. AMR-OP60 – Operation manual
file: amr-op60_g_en_xxx.pdf

5. AMR-OP70C – Operation manual
file: amr-op70c_g_en_xxx.pdf

6. AMR-OP70RHP – Operation manual
file: amr-op70rhp_g_en_xxx.pdf

7. Application note AP0008 – Communication in MODBUS RTU network (PseDet)
file: ap0008_en_xx.pdf

8. Application note AP0023 – Scripting in DetStudio
file: ap0023_en_xx.pdf

9. Application note AP0025 – Communication in ARION network – table definition
file: ap0025_en_xx.pdf

10. Application note AP0041 – Design of graphic controls for NOA7x controllers
file: ap0041_en_xx.pdf

11. Application note AP0051 – Communication in Poseidon wireless network
file: ap0051_en_xx.pdf

12. Application note AP0054 – AMREG communication with AMiT control systems (ARION)
file: ap0054_en_xx.pdf

13. Application note AP0055 – AMREG communication with AMiT control systems (MODBUS RTU)
file: ap0055_en_xx.pdf

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 5/56 ap0047_en_03

1 Definitions of terms

Register
32bit value (4 bytes). Registers are used to exchange data between on-wall controllers with touch
screens and the superior system. Variables are “mapped” in registers. The number of registers
therefore always stems from the number of variables transferred. Register numbers in the ARION
network should be in a sequence (e.g. 0, 1, 2, ...).

Mapping a variable
Determining the position of a variable within the register for the ARION / MODBUS RTU network.
Mapping may vary for Dint and Real variables.

WYSIWYG
Is an acronym of: “What you see is what you get”. This abbreviation indicates the manner of
document editing on a computer in which the version displayed on the screen is visually identical to
the resulting version of the document.

NOS
NOS stands for Network Operating System. It is an operating system made by AMiT for selected
products.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 6/56

2 On-wall controllers
On-wall controllers come in the following forms:
◆ blind controllers with no controls (these only measure selected quantities),

◆ controllers with buttons or with a mechanical knob,

◆ controllers with touchscreens.

Options of communication and measurement of various quantities depend on the controller type.
Controllers communicate with the superior system via the RS485 interface that supports operation
of various communication protocols. This application note deals with ARION and MODBUS RTU
communication protocols.

Controllers usually come with firmware that is used for, for example, setting the room regulation
mode, temperature setpoint correction, speed of the FanCoil unit fans, or issue a command to turn
on a device.

Using controllers with a display has the great advantage of creating one’s own graphic design
and control algorithms in the DetStudio development environment. Other functions unrelated to
temperature can be also implemented. The programmer is then able to programme e.g. lighting
turning on in the room, control blinds or shades, set time plans, etc. Another great advantage is
that all these functions are controlled by the single controller, and if e.g. AMR-OP70C is used in
the room, there is no need to have another controller/switch on the wall to control the lights and so
on. Everything is determined by the programme equipment the programmer provides for the
controller.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 7/56 ap0047_en_03

3 Sample application design for AMR-OP70C
The sample design includes:
◆ viewing the temperature measured by the on-wall controller,

◆ viewing the CO2 concentration measured by the on-wall controller,

◆ setting the desired room mode,

◆ setting the desired fan mode,

◆ signalisation of exceeded CO2 concentration limit,

◆ providing measured and set values into the network ARION / MODBUS RTU.

The example is available in the annex to this application note. It is the file named
op70c_p1_en_xx.dsox.

3.1 Creating a project
When creating a project, select the on-wall controller “AMR-OP7xC”.

Fig. 1 – Selecting the on-wall controller type

After selecting the on-wall controller type, select “Portrait” orientation (upright).

Fig. 2 – Selecting the AMR-OP70C screen orientation

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 8/56

3.2 Defining internal variables
The variables that are not supposed to lose their values after the controller restart must be placed
into the EEPROM memory. To do so, use the EEPROM object. After double-clicking the EEPROM

object (in the “Project” window – section “Objects”), the “EEPROM” tab opens for the variables to
be inserted with the Insert key. In the sample application, only the Correction variable is defined

in the EEPROM memory.

Fig. 3 – Variable in the EEPROM memory

3.3 Definition of the protocol and the variables intended for
communication

In the example application, the AMR-OP70C is a slave in an ARION or MODBUS RTU network.

3.3.1 Communication protocol definition
Use the SerialBusN communication object to define the ARION and MODBUS RTU protocol at

the same time. To insert the object into the project, select it from the communication objects menu
accessible through the context menu – “Add object” – under “Communication”.

Fig. 4 – Adding objects into the project

After selecting the “Add object”, the “Objects and blocks in libraries” list opens; select the
SerialBusN object and confirm the selection by clicking the “OK” button.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 9/56 ap0047_en_03

Fig. 5 – Selection of SerialBusN

After closing the object list window, SerialBusN appears in the “Project” window under

“Communication”.

Fig. 6 – SerialBusN object in the Communication section

For the time being, hard-code the communication protocol and the communication parameters.
The option to change the communication parameters will be dealt with later.

Left-clicking the SerialBusN object opens the “Properties” window listing the properties of the

communication parameters of the object. Set the SerialBusN object properties according to the

following picture.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 10/56

Fig. 7 – Setting communication parameters of the SerialBusN object

Note
Leave the communication protocol (ProtocolMode) as “Modbus” – for the purposes of future

updates of the on-wall controller (DetStudio communicates with the on-wall controllers through the
MODBUS RTU).

Set the Arion Registry Count property to 5 as the example uses:

◆ 1× DInt register for setting the room mode and the fan mode,

◆ 1× DInt register for sending the measured values of CO2 to the superior system,

◆ 1× DInt register which the superior system uses for setting the CO2 limit for a warning due to

exceeded CO2 level.

◆ 1× Real register for sending the temperature values measured by the controller to the superior

system,

◆ 1× Real register which the superior system uses for setting the temperature setpoint to show it

on the controller display.

Set the Modbus Registry Count property to 110. The first 100 registers (0 to 99) are reserved for

the system. A single DInt or Real register (size of both is 32 bits) takes two MODBUS registers (as
they are 16 bits each).

Other communication parameters can be set in service screens (see the on-wall controller
operation manual). In the service screens, the address will be set to 1, the communication speed to
38,400 and even parity for MODBUS RTU.

3.3.2 Definition of variables for data exchange with the control system
As mentioned earlier, the example of controller settings (for the purpose of data exchange with the
control system) uses 5 registers per 32 bits. Their descriptions are in the previous chapter.

To set the data exchange with the control system, define six variables (two variables will be
mapped in a single register) in the SerialBusN tab (opened by double-clicking the SerialBusN

object in the “Communication” section of the “Project” window), see the picture below.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 11/56 ap0047_en_03

Fig. 8 – Defining variables in the SerialBusN object

3.3.3 Mapping variables into registers
Since only 2 bits will be used for the Room_Mode variable (room mode) and 3 bits for the Fan_Mode

variable (fan mode), it is convenient to send both variables into the ARION (MODBUS RTU)
network in a single register with 5 bits used up. To map more than one variable into a single
register of the ARION (MODBUS RTU) network, use the “Properties” window of the individual
variables of the SerialBusN object The properties for mapping are BitLenght, BitOffset and

RegisterArion (RegisterModbus).

Set the variable properties according to the following pictures.

Fig. 9 – Mapping the Room_Mode variable into registers

Fig. 10 – Mapping the Fan_Mode variable into registers

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 12/56

Fig. 11 – Mapping the CO2_Meas variable into registers

Fig. 12 – Mapping the CO2_Limit variable into registers

Fig. 13 – Mapping the T_Meas variable into registers

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 13/56 ap0047_en_03

Fig. 14 – Mapping the T_Set variable into registers

3.4 Designing the AMR-OP70C the operating application of the
controller

To create the operating part of the controller programme that will periodically repeat on the
AMR-OP70C, use a process called “Process1”. Within the process, programme saving of the
measured temperature (temperature will be corrected by a correction editable by the user) and
saving of the CO2 concentration into the variables defined in the SerialBusN object. (see chapter

3.2 “Defining internal variables”).

Note
The so-called intellisense help (keyboard shortcut Ctrl+j) makes it easier to find a specific unit – it
contains all available objects, variables and preferences usable for the project. It is possible to list
through the list by pressing the up/down arrows. After opening the intellisense help, start typing the
object name. This narrows down the list of objects that correspond to the typed letters – confirm
the selection by Enter.

Insert the SerialBusN object into the process by following the steps in the note above.

Fig. 15 – Intellisense help

Writing a “.” character (full stop) behind the object name, the intellisense list opens again with the
list of properties (or methods) that can be used for the given object. For example, save the
measured temperature into the T_Meas variable. Pick the T_Meas variable from the list (a similar

method to adding the SerialBusN object).

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 14/56

Fig. 16 – Picking the T_Meas variable of the SerialBusN object

Using the above-mentioned instructions, programme the following code that saves the measured
values into the SerialBusN object variables.

SerialBusN.T_Meas = IO.DeviceTemperature + EEprom.Correction;

SerialBusN.CO2_Meas = IO.CO2;

Use the Correction variable to correct the measured temperature due to the need for unification

of potential differences between temperature measurements from sensors by different
manufacturers.

With each activation of “Process 1” (depending on its Period parameter), the application will set the
bit no. 1 of the DI channel of the ARION network and the bit no. 1 of the register no. 8 of the
MODBUS RTU network to True (write information into one of the registers by the controller). The
superior system will list all data from the controller based on bit no. 1. When the write information is
set – by the controller – too often, the superior system will try to communicate all data from the
controller too often and it may cause significant network traffic. To prevent this state, use, for
example, the Timer block to set periodicity with which the measured temperatures are written into

the register.

Insert the Timer block into the project as a global block and set its properties according to the

following picture.

Fig. 17 – Properties of the Timer1 global block

The periodic process will check whether the timer ticked or not. If yes, the application writes the
measured values into registers.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 15/56 ap0047_en_03

Timer1(); // timer operator for periodic reading

if Timer1.Out then // Timer1 ticked

 SerialBusN.T_Meas = IO.DeviceTemperature + EEprom.Correction;

 SerialBusN.CO2_Meas = IO.CO2;

endif;

It is necessary to activate the Timer1 block by its Action parameter. Set the property to True in

“ProcessInit” as follows:

Timer1.Action=1;

To indicate the CO2 threshold was exceeded, use the TimerPulse block (a local versions is

sufficient). Write the following expression into the Input property of the block:

IO.CO2 > SerialBusN.CO2Limit

The Out property will write directly into the IO.Buzzer (the activation of sound notification). Final

code will look like this:

TimerPulse1(Input = IO.CO2 > SerialBusN.CO2Limit, Out => IO.Buzzer);

The duration of the sound notification can be adjusted in the property window of the TimerPulse1

block (PulseLength parameter), see the following picture.

Fig. 18 – Properties of the TimerPulse1 local block

Set the volume and the frequency of the buzzer directly in the properties window that appears after
clicking the IO.Buzzer block directly in the structured text of the process.

Fig. 19 – Buzzer properties

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 16/56

3.5 Screen design for AMR-OP70C
The process of screen design for AMR-OP70C is the same as for any other touchscreen station.
As with other touchscreen stations manufactured by AMiT, this station offers the benefit of
choice in terms of screen orientation – either Portrait or LandScape.

Choose the orientation when creating the project (see 3.1 “Creating a project“) or whenever during
the project design (in the Screens section of the “Project settings” window accessible through the
“Project” tab in the upper toolbar).

The screen supports both standard text elements available in DetStudio IDE (integrated
development environment) or picture/graphic elements. More information on how to process
images on AMR-OP7x is in the application notes “AP0041 – Designing the graphic elements for
the NOA7x series of controllers”.

3.5.1 Setting the heating mode and the fan mode
To allow the user to change the mode, rename the automatically created “Screen1” in the
“Screens” tab as “Main”.

Fig. 20 – Screen name in the “Project” window

To switch between the room heating modes or the fan modes, use, for example, the CaseButton –

the description of this element is in the DetStudio IDE help.

Place two CaseButton elements onto the screen. Use the sizing handles (eight of them appear

directly after the element is placed on the screen or after it is selected by a single click of the left
mouse button) to adjust their shape to a square. Adjust their positions according to the following
picture.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 17/56 ap0047_en_03

Fig. 21 – Positioning of the CaseButton elements on the “Main” screen

The right CaseButton element will be used to set the desired heating mode and the left one will be

used to set the desired fan mode.

Select the right CaseButton element with a left click to display the “Properties” window with the list

of its properties. Assign a variable to the element the value of which will change in respect to how
many times was the element tapped. Click the Variable property in the list of properties, then

click the button that appears in the empty field next to the property to open the “Select variable”
window. Among other things, the window displays the list of variables. Since the right CaseButton

will be used for the room mode, choose the Room_Mode variable of the SerialBusN object.

After confirming the selection, define the appearance of the element through the Items property in

the “Properties” window.

Fig. 22 – Setting the CaseButton element appearance

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 18/56

Clicking the button next to the aforementioned item opens the “Items” window. Adjust it
according to the following picture.

Fig. 23 – Selecting pictures for the individual values of the Room_Mode variable

One of the methods for editing the values of individual cells of the items window is to press F2.

Set the left CaseButton element similarly. In its “Properties” window, set the Variable to

Fan_Mode and its items according to the following picture.

Fig. 24 – Selecting pictures for the individual values of the Fan_Mode variable

Icons used in setting the CaseButton element are included in the DetStudio installation located at

“C:\Users\<user_name>\Documents\DetStudio\Icons\NOAx7x\” as is stated in the “AP0041 –
Designing the graphic elements for the NOA7x series of controllers”.

3.5.2 Showing the temperature measured by AMR-OP70C
Read the temperature measured by the integrated sensor in AMR-OP70C within the operating
application and save it into the SerialBusN.T_Meas variable (see chapter “3.4Designing the

AMR-OP70C the operating application of the controller”). To display the T_Meas value, use the

NumericView element. Drag it onto the screen (position according to the following picture) from

the “Basic” section of the “Toolbox” window.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 19/56 ap0047_en_03

Fig. 25 – Location of the NumericView element

Double-clicking the NumericView element opens the “Select variable” window – select

SerialBusN.T_Meas and confirm.

Do not use IO.DeviceTemperature directly as the measured value is also corrected by the

EEprom.Correction variable. The same (corrected) value is sent to the superior system.

After the variable is selected, set the appearance of the NumericView variable. Set the Font

property (display font) to “ADT 21” and leave the Format (display mode) as is (i.e. ##.# – real

numbers ranging from -9.9 to 99.9). After setting the Location property to “3;24”, the NumericView

element “Properties” window will look like this.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 20/56

Fig. 26 – Settings of NumericView

After setting the NumericView element according to the picture, the “Main” screen should look like

this.

Fig. 27 – “Main” screen with the temperature measured by the integrated sensor

3.5.3 Displaying static text
The user has to know in what units are the values displayed. To save space, display the units in a
different size. To achieve that, use the Label text field located in the “Basic” section of the

“Toolbox” window. Place the element at the intended location, double-click it and enter “°C”. The
“Main” screen should now look like this.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 21/56 ap0047_en_03

Fig. 28 – The “Main” screen with static text “°C”

Next, make the screen show the temperature sent by the superior system. As with the previous
temperature field, use the NumericView element. This time, however, set the units in the

“Properties” window of the element – look for the Unit parameter. The “Main” screen should then

look like this.

Fig. 29 – The “Main” screen with all the required fields

The above-mentioned example for AMR-OP70C is included in the application note attachments –
in the op70c_p1_en_xx.dsox file.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 22/56

3.6 Generating the application for AMR-OP70C
In order for the DetStudio to be able to generate the application, install the “DetStudioTools.exe”
package (not included in the DetStudio). This package is available (after signing up) at
amitomation.com.

The generation produces a file with the *.bin extension and a name identical to the project name.

3.7 Loading the application in AMR-OP70C
Load the application in AMR-OP70C via the MODBUS RTU protocol of the RS485 interface. Use a
USB to RS485 converter to connect the PC with the controller (e.g. SB485s offered by AMiT). The
loading procedure is the same as for the other ethernet-less AMR stations – it is described in the
EsiDet help section of the DetStudio IDE help.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 23/56 ap0047_en_03

4 Operation example of AMR-OP70C in stations
with NOS

AMR-OP70C may communicate with the superior system via the ARION or MODBUS RTU
protocol. This application note will describe examples with both protocols.

4.1 Example – ARION protocol
This example is available in this application note attachments – in the rs_p1_en_xx.dso file.

4.1.1 Definition of AMR-OP70C in DetStudio
Define AMR-OP70C in the ARION table in the AMiT control system (see “AP0025 –
Communication in the ARION network – table definition”). To display the table, double-click the
“Arion0” item located under Communication / Arion in the project window.

If there is an application with a defined SerialBusN object in AMR-OP70C, define AMR-OP70C in

the control system application by dragging the AMR-OP3x7x module into the table (see the

following picture).

Fig. 30 – Definition of AMR-OP70C in the control system

After placing the AMR-OP3x7x module into the table, define the number of registers available in

AMR-OP70C in the Properties window of the module. It needs to match the number of registers in
the design of the AMR-OP70C application (see chapter 3.3.1 “Communication protocol definition”).
Since there were 5 registers defined in the application for AMR-OP70C, the properties window
should look as follows.

Fig. 31 – Defining the address and the number of registers
programmed in AMR-OP70C

Other than the defined registers, AMR-OP70C also uses an ARION network channel for digital
inputs and digital outputs.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 24/56

In the digital inputs channel, the first three bits are used for the following purposes:

◆ DI.0 – AMR-OP70C was restarted,

◆ DI.1 – a value was written into one of the variables defined in the SerialBusN of AMR-OP70C,

◆ DI.2 – communication failure between AMR-OP70C and the control system.

Digital inputs are read with a period defined in the Properties of the AMR-OP3x7x module (defined

while defining the module in the ARON network table).

The digital outputs channel is used to reset flags set by the channel of digital inputs. As soon as
the control system notices the value of one of the digital input registers was set to True, it should
perform a corresponding procedure and then reset the input through the digital outputs channel.
The individual bits are described below:
◆ DO.0 – restart flag reset,

◆ DO.1 – resets the flag set after a SerialBusN variable was changed,

◆ DO.2 – resets the communication failure flag.

4.1.2 Method of communication with AMR-OP70C
There are two methods of communication between AMR-OP70C and the control system.

◆ Simplified method

◆ Recommended method

In both cases, the communication follows the same structure of communication – a single request
handles both writing and reading.

Simplified method
Communication with AMR-OP70C is provided by modules ARI_RegIn  /  ARI_RegOut – place them

into the periodic process. The ARI_Trig special module enters the read/write requests.

Recommended method
Communication with AMR-OP70C is established via the digital inputs channel. Request for reading
from AMR-OP70C is entered based on the state of signals of the channel. Therefore, only the DI.1
input is monitored periodically (see previous chapter). AMR-OP70C values are read based on the
settings of the input – via modules ARI_RegIn and ARI_Trig.

Write is performed based on the change of a value on the side of the control system through the
ARI_RegOut module along with the ARI_Trig module.

Note
With AMR-OP70C, it is impossible to read only a single register. Using the ARI_Trig module

always involves all the registers defined in AMR-OP70C. However, it is possible to access and
save single registers once they are in the control system buffer by using multiple ARI_RegIn

modules.

4.1.3 Designing a programme for communication with AMR-OP70C
This guide will use the recommended method of communication between the control system and
AMR-OP70C (see the previous chapter).

Place the ARI_State module into the periodic process – it is used to check whether the controller

is communicating with the control system. Additionally, use the ARI_DigIn module to check

whether the control system wrote into one of the variables mapped into the SerialBusN object into

the register defined in the controller. Read the registers based on a write flag of a SerialBusN

variable.

Write the value only when the change is registered and only if there is no read request (writes
occur along reads).

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 25/56 ap0047_en_03

// state of AMR-OP70C and state of registers transfer

ARI_State 1, OP_state, 4, OP_R_trans

// checking for a change in AMR-OP70C

ARI_DigIn 1, 0, flags, 0x00000000

// writing the temperature setpoint (only when its value changes)

Let @SetPointTmp = (SetPoints[0,0] > (SetPoint_Old[0,0] + 0.1)) or (SetPoints[0,0] <

(SetPoint_Old[0,0] - 0.1)) // a check whether a change occurred or not

Let @LimitCO2 = (SetPoints[1,0] > (SetPoint_Old[1,0] + 0.1)) or (SetPoints[1,0] <

(SetPoint_Old[1,0] - 0.1)) // a check whether a change occurred or not

Let @OP_Writ_Reg = @SetPointTmp or @LimitCO2 // setting the flag for a change or the

lack of thereof

// flag for the change of values issued by the controller, or for a change issued by

the system

Let @OP_RW = (flags > 0) or @OP_Writ_Reg

If @OP_RW // communication is started based on the flag

 // communication of registers programmed below performs

 // both read and write operations with a single request. That is why data is

 // first saved into a writing buffer and only then it is loaded

 ARI_RegOut 1, 3, 2, SetPoints[0,0], SetPointType[0,0], 5

 // a command for communication of registers of AMR-OP70C

 ARI_Trig 1, 4

 // acknowledging reception of information and resetting the flag for

 // change/restart/loss of service

 Let Flag_reset = 7

 ARI_DigOut 1, 0, 3, Flag_reset, 0x00000000

 // command for flag reset

 ARI_Trig 1, 3

 If @OP_Writ_Reg // if there is a writing request

 Let SetPoint_Old[0,0] = SetPoints[0,0] // the written value is saved

 Let SetPoint_Old[1,0] = SetPoints[1,0] // the written value is saved

 EndIf

EndIf

// buffer is read only after data is communicated

Let @OP_Read_Reg = OP_state.0 and not(OP_R_Trans.0)

If @OP_Read_Reg

 // load measured temperature

 ARI_RegIn 1, 0, 1, T_Meas, NONE[0,0], 5

 // read measured CO2 concentration

 ARI_RegIn 1, 1, 1, CO2, NONE[0,0], 3

 // read room mode and fan mode

 ARI_RegIn 1, 1, 1, OP_Mode, NONE[0,0], 4

EndIf

Note
Using the ARI_Trig module issues a command for a simultaneous read and write of registers. If

the programmer uses the same variable for both writing and reading and writes into the variable
through the ARI_RegOut, the application triggers the ARI_Trig module and writes into the relevant

register in AMR-OP70C. If the user changed the value of such register and the control system
changed the same value through the ARI_RegOut module before the control system

acknowledged the change performed by the user, the control system overwrites the value set by
the user in AMR-OP70C through the ARI_RegOut module with the value set by the control system

through the ARI_Trig module. It is recommended to use different registers for writing and reading

to make such issues easier to solve.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 26/56

4.2 Example – MODBUS RTU protocol
This example is available in this application note attachments – in the rs_p2_en_xx.dso file.

4.2.1 Definition of AMR-OP70C in DetStudio
Define AMR-OP70C in the MODBUS table in the AMiT control system (see “AP0008 –
Communication in MODBUS RTU network (PseDet)”). Insert the definition of master
communication in MODBUS RTU network into the “Modbus” folder in the project window through
the “Modbus” folder context menu. Subsequently, insert the definition of the device
(ModbusDevice) with which the control system is supposed to communicate. Do so through the
“ModbusMaster0” object context menu.

Fig. 32 – Definition of AMR-OP70C in the control system

Define the “ModbusMaster0” communication parameters in the object properties window. The
communication parameters need to correspond to those defined in AMR-OP70C. In the
“SerialPort” parameter, set the interface the device uses to communicate through the
MODBUS RTU protocol. When requesting communication through RS485, it is necessary to set
the property to 1.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 27/56 ap0047_en_03

Fig. 33 – Properties of the “ModbusMaster0” object

In the properties window, set the “ModbusDevice0” address to the same address as AMR-OP70C
has for the MODBUS RTU network. Set the ClientLabel property to a different value from “-1” for

later evaluation of communication with AMR-OP70C.

Fig. 34 – Properties of the “ModbusDevice0” object

Double-clicking the “ModbusDevice0” object opens a tab – use the tab to define registers for
communication into / out of AMR-OP70C as defined in chapter 3.3.2 “Definition of variables for
data exchange with the control system”. This guide will use the recommended method of
communication between the control system and AMR-OP70C (see chapter 4.2.2 “Method of
communication with AMR-OP70C”). For the purposes of the recommended method of
communication, it is also necessary to define the communication of the system register no. 8.

Fig. 35 – Defining registers in the “ModbusDevice0” object

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 28/56

Other than the system register and the CO2 threshold warning, all communication will be activated
manually. Enter any value into the “Label” column of selected registers (see the example image).
Use the corresponding values in the module for issuing communication or for evaluation of its
state.

Note
The “Auto” priority setting is convenient to use in case there would be a temporary change of
settings (e.g. from the control system display). – e.g. setting the threshold for the CO2 warning.
The “Auto” priority is not recommended for registers with a mapped variable used in the periodic
process. With the priority set to “Auto”, every write into the mapped variable – even with the same
value – also causes a request for a write into the peripheral. That creates unnecessary network
traffic – an example would be the room temperature setpoint. In most cases, the room temperature
setpoint.is the output value of the DayPlan(2) module. Since the DayPlan(2) module is

processed in a periodic process, the write request sets periodically along with the period of the
process the module belongs to. That is why, in the example, the label of the write priority is set to
“--manual--” for the room temperature setpoint.

Other than the defined registers, the SerialBusN object also provides the MODBUS RTU network

with a group of system holding registers.

Of the system registers, the register no. 8 (SystemStatus) can be used; the first three bits are
already used for the following purposes:
◆ SystemStatus.0 – the controller has been restarted,

◆ SystemStatus.1 – a value was written in the controller into one of the variables mapped in a

register in the SerialBusN object,

◆ SystemStatus.2 – communication failure between the controller and the control system.

The above-mentioned flags are reset by writing True into the same bit of the “SystemStatus”
register. As soon as the control system notices that the value of one of the digital inputs registers
was set to true, it should perform a corresponding procedure and then reset the flag by writing True
into the same bit.

4.2.2 Method of communication with AMR-OP70C
There are two methods of communication between AMR-OP70C and the control system.

◆ Simplified method

◆ Recommended method

Simplified method
Reading of required values from AMR-OP70C occurs with the period set in the definition of the
corresponding register or registers. Writing of required values into AMR-OP70C occurs with every
write into a variable mapped – on the control system side – to the MODBUS RTU network.

In terms of programming of the control system, the stated communication type is very simple.
However, it creates a needless network traffic – queries on the set/measured values even in cases
when the controller values did not change. Using the simplified method is not recommended for an
extensive MODBUS RTU network.

Recommended method
Communication with AMR-OP70C uses register no. 8 (SystemStatus). Request for reading from
AMR-OP70C is entered based on the state of bits of the controller. Therefore, only register no. 8 is
monitored periodically. Communication itself occurs only based on the state of bit no. 1. Reading
from AMR-OP70C occurs based on the state of the bit.

Below, this application note will deal with the recommended method of communication.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 29/56 ap0047_en_03

4.2.3 Designing a programme for communication with AMR-OP70C
Place the MdbmReqSt module into the periodic process – it is used to check whether the controller

is communicating system register no. 8. Register no. 8 is used to check whether a change
occurred in one of the variables mapped in the SerialBusN in register defined in the controller.

Read registers based on the flag for writing into a variable in the SerialBusN.

Write the required value only when a change was detected.

// communication state check

MdbmReqSt 1, 1008, OP_R_Trans, NONE

If not (OP_R_Trans.0) // in case of no communication taking place

 If Flags > 0 // if the change was entered via the controller

 MdbmReqSt 1, 1104, OP_Read, NONE // the last register communication state

 If not(OP_Read.0) // in case the last register is not being communicated

 // if the last register was communicated successfully and is

 // acknowledged

 If OP_Read.1 and @Acknowledge

 Let Flags = 7 // system register resets

 MdbmWrite 1, 1008, NONE

 Let @Acknowledge = false // resets the flag of changes done from

 // the controller

 Else

 // reading the measured temperature, CO2 concentration and the

 // mode

 Let @Acknowledge = true // sets the flag for changes done via the

 // controller

 MdbmMark 1, 3, 100, 6, MarkRes

 EndIf

 EndIf

 EndIf

EndIf

// checks whether the system changed the temperature setpoint

Let @SetPointTmp = (T_Set > (T_Set_Old + 0.1)) or (T_Set < (T_Set_Old - 0.1))

// if the system changed a value, or the controller restarted and the acknowledge

// flag is false

If (@SetPointTmp or bool(Flags & 5))

 MdbmWrite 1, 1106, NONE

 Let T_Set_Old = T_Set

EndIf

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 30/56

5 Extending application functions for AMR-OP70C

5.1 Setting communication parameters for AMR-OP70C on the
display

Setting the AMR-OP70C communication parameters is possible (through the SerialBusN object

parameters) directly from the screen window.

This example is available in this application note attachments – in the op70c_p1_en_xx.dsox file.

Caution
The communication parameters are located in an EEPROM memory with a limited number of
writes!

In this case, it is required to implement the possibility for dynamic change of communication
protocol and dynamic change of communication parameters.

Define 3 new screens for the options to define all communication parameters – see the following
picture.

Fig. 36 – Screens for communication parameters settings

5.1.1 Protocol type choice screen
To choose the type of protocol used for data exchange between AMR-OP70C and the superior
system (e.g. any control system made by AMiT), use the “Srv_Protocol” screen. Programme the
choice itself by dragging a RadioButton from the “Toolbox” window (“General” section) onto the

screen. Double-click the RadioButton element to open the window with definitions of individual

items of the element. Set it up according to the following picture.

Fig. 37 – Setting the items of the RadioButton element

After confirming the preferences by pressing “OK”, the scripting part of the screen opens with
predefined RadioButton1_Item0_OnSelected and RadioButton1_Item1_OnSelected events.

These objects will not be used in the application. Delete them and return to the screen design.

For confirming the selection of the protocol and returning to the MenuScreen containing screen,

use the Button element in the “Toolbox” window (“TouchScreen” section). Drag the element onto

the screen and double-click it to open the scripting part of the screen with a predefined
Button1_OnButtonDown event. Programme the event so that the communication protocol type

choice is saved and the controller returns to the MenuScreen containing screen. Based on the

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 31/56 ap0047_en_03

choice of the RadioButton element, this event will save either 0 or 1 into the

SerialBusN.ProtocolMode parameter. Regarding the SerialBusN object, 0 means the ARION

communication protocol and 1 means the MODBUS RTU communication protocol. At the same
time, programme the event to also redirect the user to a different screen. The resulting script
should look like this:

event Button1_OnButtonDown()

 SerialBusN.ProtocolMode = RadioButton1.SelectedIndex;

 Srv_Menu.Show();

end;

Note
Do not define writing of SerialBusN.ProtocolMode within the ItemX_OnSelected event of the

RadioButton element as it would lead to unnecessary writes into the EEPROM memory should

the user frequently switch between the communication protocols. That is why it is desirable to
perform the write into the SerialBusN.ProtocolMode variable only when leaving the screen

through the protocol type choice confirmation.

Set the appearance of the Button element in the preferences window (appears after clicking the

element) according to the following picture.

Fig. 38 – Settings of the Button element

Next, place a Label element into the upper part of the screen. It is located in the “Toolbox” window

in the “Basic” section. Double-click the element and type in “Protocol”.

The resulting screen for communication protocol type choice should look like this.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 32/56

Fig. 39 – Communication protocol type choice screen

Lastly, add a script into the “OnOpen” event of the screen that shows the currently selected
communication protocol after the screen is opened. Add the following script into the OnOpen event

of the screen.

RadioButton1.SelectedIndex = SerialBusN.ProtocolMode;

RadioButton1.Refresh();

5.1.2 AMR-OP70C address settings screen
To set the address AMR-OP70C will use in communication with the network, use the
“Srv_Address” screen. The range of usable addresses will be set based on the chosen
communication protocol.

Prior to programming the AMR-OP70C address setting, copy (Ctrl+c) the “Back” button and the
“Protocol” Label from the “Srv_Protocol” screen and paste (Ctrl+v) them on the “Srv_Address”

screen (on the same place). Change the “Protocol” text of the Label element to “Address”.

Setting the address itself will be done by holding one of the two buttons placed onto the screen
from the “TouchScreen” section of the “Toolbox” window. These buttons will increment/decrement
the address. Furthermore, place onto the screen a NumericView element (without a linked

variable). Organise and set the elements according to the following picture.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 33/56 ap0047_en_03

Fig. 40 – Address setting screen

As with the “Srv_Protocol” screen, do not save the chosen address into the SerialBusN.Address

property right after it is set but rather when the user leaves the screen. To make the „+“ and „-“
buttons operable, use their OnButtonPress event. To go to the events associated with individual

elements, press the button in the “Properties” window of the given element. If the “Properties”
window lists the properties of the desired Button, clicking the button displays the following list

of events.

Fig. 41 – Button element properties

Left-clicking the empty field next to the OnButtonPress event displays the button. Clicking

opens the scripting part of the screen and creates a corresponding event (OnButtonPress). Use

this event to programme the incrementation of address AMR-OP70C according to the selected
protocol. The resulting operation code for tapping and holding the button should look like this:

event Button2_OnButtonPress() // “+” button operation

 If SerialBusN.ProtocolMode.0 then // MODBUS protocol is chosen

 If NumericView1.Value < 247 then

 NumericView1.Value = NumericView1.Value + 1;

 Else

 NumericView1.Value = 1;

 EndIf;

 Else // ARION protocol is chosen

 If NumericView1.Value < 63 then

 NumericView1.Value = NumericView1.Value + 1;

 Else

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 34/56

 NumericView1.Value = 1;

 EndIf;

 EndIf;

 NumericView1.Refresh();

end;

The process is similar for the address decrementing button. The decrementing button operation
code should look like this.

event Button3_OnButtonPress() // “-” button operation

 If SerialBusN.ProtocolMode.0 then // MODBUS protocol is chosen

 If NumericView1.Value > 1 then

 NumericView1.Value = NumericView1.Value - 1;

 Else

 NumericView1.Value = 247;

 EndIf;

 Else // ARION protocol is chosen

 If NumericView1.Value > 1 then

 NumericView1.Value = NumericView1.Value - 1;

 Else

 NumericView1.Value = 63;

 EndIf;

 EndIf;

 NumericView1.Refresh();

end;

In the next step, programme the operation of the “Back” button. Use the OnButtonDown event of

the “Back” button – first save the set address value into the Address property of the SerialBusN

object and then insert the code for leaving the screen for the “Srv_Menu” screen. The resulting
code should look like this:

event Button1_OnButtonDown() // “Back” button operation

 SerialBusN.Address = NumericView1.Value;

 Srv_Menu.Show();

end;

Lastly, add a script into the OnOpen event of the screen that shows the currently chosen

AMR-OP70C address after the screen is opened. Add the following script into the OnOpen event of

the screen.

NumericView1.Value = SerialBusN.Address;

NumericView1.Refresh();

5.1.3 Communication speed settings screen
To set the speed AMR-OP70C will use to communicate with the network, define a “Srv_Speed”
screen by duplicating the already existing “Srv_Protocol” screen.

To do so, select the Function / Duplicate screen option in the screen toolbar.

Fig. 42 – Duplicate screen function

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 35/56 ap0047_en_03

After duplicating the screen, change the Label element text to “Speed”. Set the RadioButton

element items (after double-clicking the element) according to the following picture.

Fig. 43 – Setting the items of the RadioButton element

After confirming the preferences by pressing “OK”, the scripting part of the screen opens with
predefined RadioButton1_Item0_OnSelected, RadioButton1_Item1_OnSelected,

RadioButton1_Item2_OnSelected and RadioButton1_Item3_OnSelected events. These

events will not be used in the application. Delete them and return to the screen design.

Adjust the script of the Button1_OnButtonDown Button event according to the following picture.

event Button1_OnButtonDown()

 If RadioButton1.SelectedIndex == 0 then

 SerialBusN.BaudRate = 9600;

 Else

 If RadioButton1.SelectedIndex == 1 then

 SerialBusN.BaudRate = 19200;

 Else

 If RadioButton1.SelectedIndex == 2 then

 SerialBusN.BaudRate = 38400;

 Else

 SerialBusN.BaudRate = 57600;

 EndIf;

 EndIf;

 EndIf;

 Srv_Menu.Show();

end;

Set the RadioButton object properties according to the following picture.

Fig. 44 – Settings of the RadioButton element properties

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 36/56

The resulting screen for communication speed settings should look like this.

Fig. 45 – Communication speed settings screen

Edit the OnOpen event script as follows.

 If SerialBusN.BaudRate == 9600 then

 RadioButton1.SelectedIndex = 0;

 Else

 If SerialBusN.BaudRate == 19200 then

 RadioButton1.SelectedIndex = 1;

 Else

 If SerialBusN.BaudRate == 38400 then

 RadioButton1.SelectedIndex = 2;

 Else

 RadioButton1.SelectedIndex = 3;

 EndIf;

 EndIf;

 EndIf;

5.1.4 Parity settings screen
To set the parity AMR-OP70C will use to communicate with the MODBUS RTU network (parity
cannot be changed in ARION network), define a “Srv_Parity” screen by duplicating the already
existing “Srv_Protocol” screen.

To do so, select the Function / Duplicate screen option in the screen toolbar.

After duplicating the screen, change the Label element text to “Parity”. Set the RadioButton

element items (after double-clicking the element) according to the following picture.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 37/56 ap0047_en_03

Fig. 46 – Setting the items of the RadioButton element

After confirming the defined items by pressing “OK”, the scripting part of the screen opens with
predefined RadioButton1_Item0_OnSelected, RadioButton1_Item1_OnSelected and

RadioButton1_Item2_OnSelected events. These events will not be used in the application.

Delete them and return to the screen design.

Adjust the script of the Button1_OnButtonDown Button event according to the following picture.

event Button1_OnButtonDown()

 SerialBusN.ModbusParity = RadioButton1.SelectedIndex;

 Srv_Menu.Show();

end;

Set the RadioButton object properties according to the following picture.

Fig. 47 – Settings of the RadioButton element properties

The resulting screen for communication speed settings should look like this.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 38/56

Fig. 48 – Parity settings screen

Parity settings is possible only for a MODBUS RTU based communication. Programme the script
to show the parity setting only when the MODBUS RTU protocol is selected (and add text
informing the user about it). Use the MultilineLabel element as the warning text will be longer

than one line. Drag it on the screen and edit the text to “Only for Modbus”. Additionally, add the
following code to the OnOpen event of the “Srv_Parity” screen.

If SerialBusN.ProtocolMode.0 then // if the MODBUS protocol is chosen

 MultilineLabel1.Visible = false; // hides text

 RadioButton1.Visible = true; // parity setting is visible

 RadioButton1.Enabled = true; // parity setting is possible

 RadioButton1.SelectedIndex = SerialBusN.ModbusParity; // shows current parity

 // settings

Else // if ARION is chosen

 MultilineLabel1.Visible = true; // shows text

 RadioButton1.Visible = false; // hides parity setting

 RadioButton1.Enabled = false; // parity setting is disabled

EndIf;

Srv_Parity.Refresh();

The code guarantees that the warning displays when the ARION protocol was chosen, see the
following picture. Otherwise, the parity settings will be displayed (the RadioButton element will

display current parity).

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 39/56 ap0047_en_03

Fig. 49 – The screen with parity settings for the ARION protocol

5.1.5 Service menu screen
The “Srv_Menu” page will be used to navigate between the individual settings pages. Open it and
drag onto it the MenuScreen element from the “General” section of the “Toolbox” window.

Afterwards, double-click it and set the individual items of the properties window according to the
following picture.

Fig. 50 – Setting the items of the MenuScreen element

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 40/56

Adjust the final appearance of the MenuScreen element in the “Properties” window according to

the following picture.

Fig. 51 – Settings of the Menu element

After changing the appearance, the “Srv_Menu” screen should look like this:

Fig. 52 – Service menu screen

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 41/56 ap0047_en_03

5.2 Displaying the control system time on AMR-OP70C
If displaying the control system time on AMR-OP70C is required, it is necessary to programme it
on both AMR-OP70C and in the control system.

5.2.1 Adjusting the control system application (ARION)
Adjust the global ARION network settings in the control system (the “Properties” window). In the
Arion0 network properties window, change the value of TimeBroadcast to True. That causes

control system time-frames to be broadcast into the ARION network.

Fig. 53 – Time broadcast settings

5.2.2 Adjusting the control system application (MODBUS RTU)
In the control system, it is necessary to read the time value of the control system and define writing
into the system registers 2 and 3 (Time registers) of the controller.

Use the GetTime module to get the system time of the control system. To send the time to the

controller, use a special format (i.e. DB-Net). To receive the time value, define a Long variable and
use it as a property of the Time module of the GetTime.

Place the module into the process with a period corresponding to the required period of writing into
the controller. In case of the rs_p2_en_xx.dso example project, it is the “Proc01” process with a
period of 5,000 ms.

GetTime DBNet_Time, NONE, NONE

To write the DBNet_Time variable value, use the “ModbusDevice0” table. Since there is no

requirement for reading the register into the control system, the reading priority should be set to “--
manual--”. Set the writing priority to “Auto”.

Fig. 54 – Definition of writing into the system register 2 and 3 (Time)

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 42/56

Note
The aforementioned method of writing time values will be possible only for communication with a
single controller. With the “Auto” priority chosen, after the time is written into the controller the write
request flag is reset. When there are more occurrences of this line in other tables (other
“ModbusDeviceX”), write operations related to them would never take place. The first table resets
the write request flag which means that the request doesn’t reach any subsequent tables. A
solution is to use the “--manual--” write priority in conjunction with the MdbmWrite module.

5.2.3 Adjusting the application for AMR-OP70C
In AMR-OP70C it is sufficient to place a DateTimeView element onto a screen and to adjust the

display format. For the purposes of this example, place the element onto the “Main” screen.
Double-click it to tie it to the NowLong variable of the DateTime object. The screen should then

look like this:

Fig. 55 – Time displaying screen

5.3 Navigating between screens
To programme the transitions from one screen to another – e.g. from the main screen to the
correction settings screen, or from the main screen to the service screen with communication
parameters settings – use the ImageMap element. Implement the transition so that when the user

only touches the section of the screen highlighted in the picture below, the measured temperature
correction settings screen opens. When the area is held for approx. 10 s, the service menu is
displayed instead.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 43/56 ap0047_en_03

Fig. 56 – The screen transition area

Insert the ImageMap element into the required section and adjust its size so that it matches the size

of the given area. With the “Add/Remove region” item in the properties window of the element,
define a region that takes up all the space of the element.

Fig. 57 – ImageMap element properties

In terms of programming the transition, use the OnRegionUP0 event in the ImageMap element (to

go to the correction settings) and OnRegionPress0 (to go to the service menu).

Create a new screen named “Correction”. It will be used to set the measured temperature
correction (it will edit the Temp_SensorCorrection variable saved in the EEPROM memory via

the NumericEdit element). Adjust the appearance of the screen according to the following picture.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 44/56

Fig. 58 – Correction setting screen

As was mentioned above, use the OnRegionUp0 event of “Region0” of the ImageMap element

located on the “Main” screen to transition to this screen. The event should then look like this:

event ImageMap1_OnRegionUp0()

 Correction.Show();

end;

After holding the screen for approx. 10 s, the screen should transit to the screen with the service
menu (“Srv_Menu”). To do that, use the OnRegionPress0 event of the ImageMap element (still the

same ImageMap element, but the second event out of its two). At the same time, define an integer

variable (e.g. named Time) that will be used to count the number of times the OnRegionPress0

event was called. Pressing and holding “region0” of the ImageMap will call the OnRegionPress0

every 200 ms. The transition to the service menu screen will occur only after region0 of the
ImageMap element is held pressed for 10 s. Holding the region will increment the Time variable

value until it reaches 50 (50 × 200 ms = 10 s.). As soon as the Time variable value reaches 50,

reset it and transition to the service menu screen. The final code of the OnRegionPress0 event

should look like this:

event ImageMap1_OnRegionPress0()

 Time = Time + 1;

 If Time > 50 then // 10 s pause for the press to take effect

 Time = 0;

 Srv_Menu.Show();

 EndIf;

end;

It is necessary to programme Time value resetting even into the OnRegionUp0 event. It is required

in case the user releases the button too soon and the service menu screen has yet to appear.

event ImageMap1_OnRegionUp0()

 Correction.Show();

 Time = 0;

end;

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 45/56 ap0047_en_03

6 Appendix A

6.1 Using standalone communication objects
If there is no requirement for switching between ARION and MODBUS RTU, it is possible to use
the following objects for communication through the given protocol:

◆ ArionSlave,

◆ ModbusSlave.

Each object requires a different programming attitude.

6.1.1 Object ArionSlave
The ArionSlave is substantially different from the SerialBusN in terms of sending data into the

ARION network. The SerialBusN object maps so-called registers (types DInt or Real) from the

ARION network. These registers can contain variables or properties of various objects. The
number of registers the SerialBusN object provides into the ARION network is limited to 9.

The ArionSlave provides the following signals into the ARION network:

◆ 24 signals – type DI,

◆ 24 signals – type DO,

◆ 24 signals – type AI,

◆ 24 signals – type AO.

On the side of the control system, it is necessary to configure the ArionSlave object containing

device into the “Arion0” table (see the Application note AP0025 – Communication in the ARION
network – table definition) via the ArionDevice module (in the “DM” section of the “Toolbox”). DI

or DO signals are consequently processed with the ARI_DigIn or ARI_DigOut module.

The analogue values are transmitted as 14-bit integers. Based on the sign of the value, it is
possible to transmit either a value in the range of 0 to 16,383 (unipolar) or -8,192 to 8,191 (bipolar).
The polarity of the value needs to be defined in the control system through the “Arion0” table in the
ArionDevice module definition using the ModeAI and ModeAO modules. The data is then

processed as an integer value using the ARI_NumAI or ARI_NumAO module.

As the text above suggests, it is necessary to transform a potential Real variable to an Integer in
case it is required to send such value into the control system. Only then it is possible to send it
through the AI or AO channels.

When there is a requirement to transfer a value from an analogue input to the control system or to
transfer a value from the system to an analogue output, it is necessary to use the ArionIO object

in any AMR-xxx. In case the ArionIO object is used on the AMR-xxx side, the data provided by

the ArionIO object on the control system side is processed by the ARI_AnIn or ARI_AnOut

module.

It is suitable to use the ArionSlave object in cases when there is a requirement for sending an

analogue value that is directly sent to analogue outputs or that is directly read from the analogue
input. In other cases (transferring variables or Real type object properties) it is better to use the
SerialBusN object.

More examples and further information is in the Application note AP0054 – AMREG
communication with AMiT control systems (ARION).

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 46/56

6.1.2 Object ModbusSlave
The ModbusSlave object is in its use similar to the SerialBusN object. As opposed to the

SerialBusN object, the ModbusSlave object allows the use of holding registers as well as input
registers, coils or digital inputs for mapping data into the MODBUS RTU network. Since DetStudio
v2.1, it is possible to create a reference of a MODBUS object to the required property or variable
straight in the ModbusSlave table. Alternatively, it is possible to create a register that will be used
in the application code.

More examples and further information is in the Application note AP0055 – AMREG
communication with AMiT control systems (MODBUS RTU).

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 47/56 ap0047_en_03

7 Appendix B

7.1 Operation of AMR-OP60 buttons
The on-wall controller allows operation control via a set of 4 buttons. The buttons are mapped to
the display elements as Esc, Tab, F1 and Enter – see the following picture.

Fig. 59 – Description of AMR-OP60 buttons

There are several methods of control of the on-screen buttons:

1. by using the Keyxxx buttons (suitable for changing modes with signalisation of the currently

selected mode),

2. by using the OP60kbd element with predefined buttons (suitable for entering required values

via the NumericEdit or NumericUpDn elements),

3. by using the OP60kbd element with user-defined buttons (suitable for use with elements with

special usage – e.g. RadioButton).

A programme with the aforementioned methods of use is included in this Application note – in the
op60_p1_en_xx.dsox file.

7.1.1 Keyxxx elements usage
It is suitable to use the Keyxxx elements when it is required to change the mode of the device as

well as showing the currently set mode. The KeyScreen element falls into the same category – it

can be used to transition between screens.

In the example file op60_p1_en_xx.dsox, there is a “Main” screen with four Key elements in use

(K_1, K_2, K_3 and K_4). The element “K_1” switches the room mode, the elements “K_2” and
“K_3” change the room temperature setpoint correction and the element “K_4” switches between
the user and service settings.

Operating the Key element (“K_1”)

“K_1” will change the required room mode (switching between the day plan, comfort and energy
saving). The currently selected mode will be displayed via the CaseImage element above the

button.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 48/56

CaseImage (“CI_RMode”)
It is necessary to define the images used for the CaseImage modes. Do so via the Images

property in the properties of the element. In the Variable property of the CaseImage element,

select SerialBusN.Room_Mode.

Key (“K_1”)
In the code, use the “OnKeyDown” event to operate the element.

event K_1_OnKeyDown() // room mode change

 if SerialBusN.Room_Mode < 2 then

 SerialBusN.Room_Mode = SerialBusN.Room_Mode + 1;

 else

 SerialBusN.Room_Mode = 0;

 endif;

 CI_RMode.Refresh();

end;

Operating the Key elements (“K_2” and “K_3”)

These elements will change the value of the room temperature setpoint correction in the range of
-100 to 100. The currently chosen value will be displayed via the CaseImage element above the

button.

CaseImage (“CI_Corr”)
It is necessary to define the images used for the CaseImage correction levels. Do so via the

Images property in the properties of the element. In the Variable property of the CaseImage

element, select SerialBusN.Correction.

Key (“K_2” a “K_3”)
In the code, use the “OnKeyPress” event to operate these elements. Displaying the icons above
the buttons can be done via the Image element.

event K_2_OnKeyPress() // temperature setpoint correction (lowering the setpoint)

 if SerialBusN.Room_Mode == 0 then // changes the correction only with the

 // Day plan chosen

 if SerialBusN.Correction > -100 then // if the correction is above -100

 SerialBusN.Correction = SerialBusN.Correction - 20; // the value is

 // deducted

 else

 SerialBusN.Correction = -100;

 endif;

 CI_Corr.Refresh();

 endif;

end;

event K_3_OnKeyPress() // temperature setpoint correction (increasing the setpoint)

 if SerialBusN.Room_Mode == 0 then // changes the correction only with the

 // Day plan chosen

 if SerialBusN.Correction < 100 then // if the correction is below 100

 SerialBusN.Correction = SerialBusN.Correction + 20; // the value is

 // added

 else

 SerialBusN.Correction = 100;

 endif;

 CI_Corr.Refresh();

 endif;

end;

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 49/56 ap0047_en_03

Operating the Key element (“K_4”)

The element “K_4” will make it possible to:
◆ display the sensor correction user settings screen (short press),

◆ display the service screen with communication selection (long press).

Displaying the icons above the button can be done via the Image element.

Since the button will be used for navigation to two screens, the KeyScreen cannot be used to

implement the transition. The required function needs to be programmed using the “OnKeyPress”
(long press) and “OnKeyUp” (short press) events of the Key element. “OnKeyDown” cannot be
used as it is always called only before the “OnKeyPress”.

Define the screens for the user settings of correction (for example named “U_Correction”) and the
communication protocol selection screen (for example named “S_Protocol”).

The operating script of those screens should look like this:

// displaying user settings

event K_4_OnKeyUp()

 Time = 0; // resetting the counter for a long press

 U_Correction.Show();

end;

// displaying system settings

event K_4_OnKeyPress()

 Time = Time + 1; // with every event, the counter value increments

 if Time > 50 then // if the counter value reached the required value

 Time = 0; // the counter resets

 S_Protocol.Show(); // and the protocol selection screen is displayed

 endif;

end;

7.1.2 Using OP60kbd with predefined buttons
The Op60kbd element is used with the predefined keys, for example, in the sample application

code of the “U_Correction” screen. The default settings of the element were adapted – the
ImageButton2 and ImageButton3 images were deleted as the “Tab” and “F1” are not in use.

More detailed description of the predefined keys function of the Op60kbd element is in the

DetStudio Help (Screen design section).

To return back to the previous screen, use the “OnButton1KeyDown” event of the OP60kbd

element. The code should look like this:

event OP60kbd1_OnButton1KeyDown()

 Main.Show();

end;

7.1.3 Using OP60kbd with user-defined buttons
The Op60kbd element is used with the user-defined keys, for example, in the sample application

code of the “S_Protocol” screen. The screen also uses the RadioButton button that allows the

user to switch the on-wall controller communication protocols (ARION/MODBUS). RadioButton is

not controlled by the keys available in the Op60kbd element in its default settings. It is therefore

necessary to change the keys that cannot be used for controlling the RadioButton element for

keys that are required by the element (see the DetStudio Help (Screen design section)). The
change can be implemented by editing the KeyCodeButtonX property. It is therefore necessary to

replace the “Tab” key with an “Up” key and the “F1” key for a “Down” key. Change the icons in the
properties – ImageButton2 and ImageButton3.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 50/56

When the screen appears, the RadioButton element needs to display the current setting. To

implement that, use the “OnOpen” event of the “S_Protocol” screen.

event S_Protocol_OnOpen()

 S_Protocol.FocusFirstControl();

 RadioButton1.SelectedIndex = SerialBusN.ProtocolMode; // loads current setting

 RadioButton1.Refresh();

end;

To exit the screen without saving changes, use the first button (“Esc”). The operation code of its
„OnButton1KeyDown“ event should look like this:

event OP60kbd1_OnButton1KeyDown()

 Main.Show();

end;

To save the choice and exit the screen, use the fourth button (“Enter”). The operation code of its
„OnButton4KeyDown“ event should look like this:

event OP60kbd1_OnButton4KeyDown()

 SerialBusN.ProtocolMode = RadioButton1.SelectedIndex;

 Main.Show();

end;

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 51/56 ap0047_en_03

8 Appendix C

8.1 AMR-OP70RHP operation with the Poseidon© interface
Among other things, the AMR-OP70RHP on-wall controller is equipped with a Poseidon interface.
Further information on the Poseidon network operation is in the DetStudio / EsiDet Help and in the
application note AP0051 “Communication in the Poseidon Wireless System”.

Caution
The example can be used only for setting basic connections. If more complex configurations are
required (DALI network configuration, configuration of time for opening/closing shutters or blinds,
etc.), it is necessary to use the mentioned SW tool – Poseidon Assistant – in conjunction with HW
(AMR-CP2x, AMR-CP4x, P8 TR IP, P8 TR USB) that allows Poseidon configuration.

This example is available in this application note attachments – in the op70rhp_p1_en_xx.dsox file.

8.1.1 Designing the Poseidon operation code
To insert an object for Poseidon configuration into the AMR-OP70RHP application, follow similar
steps as for the other protocols. Right-click the “Communication” folder in the “Project” window and
select “Add object”. In the list of objects, select the main Poseidon object and the peripherals the

controller is supposed to communicate with.

Fig. 60 – Selection of objects for the Poseidon network

The important properties of the P8x_xxx objects for making the network work:

◆ ID – Poseidon ID of the peripheral – stated on the peripheral label,

◆ InitDevice – a command for sending or receiving a special frame for establishing a connection,

◆ Error – the value of a potential error message.

Inserting the objects that manage the operation of peripherals within the Poseidon network causes
the above-mentioned properties to be available for any object for communication with a Poseidon
network peripheral. It is therefore possible to use them directly on the controller screens.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 52/56

8.1.2 Screen for creating connections within the Poseidon network
To design a screen for creating connections within the Poseidon network, use the NumericEdit

element for entering the device ID of the desired peripheral. It is convenient to use the
CustomFormat property to display the peripheral ID value in hexadecimal format (as the ID is

stated in hexadecimal format on the peripherals as well). Therefore, insert “%IX” into the
CustomFormat property. To allow the controller to use A to F characters for the hexadecimal

format, set the SystemEditor property to “NumericUpDn”.

The command for creating the connection between the controller and the peripheral can be
implemented via the BitSwitchButton element – add a link to the InitDevice property of the

respective Poseidon network object into the Variable property. Change the text of TextDown and

TextUp properties to “Pairing” and “Pair”. Upon press, the button sends a special frame to

establish the connection. At the same time, “Pairing” is displayed. This state lasts until the
connection between the controller and the peripheral is established or until the command times
out.

Communication failure can be displayed via the NumericView element – add a link to the Error

property of the respective Poseidon network definition object into the Variable property.

For two receivers in the Poseidon network, the final screen (Landscape mode) should look like this:

Fig. 61 – Screen for creating connections

8.1.3 Lighting settings screen
Should the user require lighting setting in precisely defined steps, use the SelectButton element.

After dragging in onto the screen, define the individual item images of the Items property

according to the following picture.

Fig. 62 – SelectButton items images

Implement the setting of the lighting levels, for example, through the P8R_Dimm object (analogue

control of lighting levels). Insert the OutX property of the P8R_Dimm object into the Variable

property of the SelectButton element.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 53/56 ap0047_en_03

Furthermore, place a Label element onto the screen and change its text to “Lighting”.

The currently set level of lighting can be loaded through the ActualOutX property of the P8R_Dimm

object. Display the value via the NumericView element – add a link to the ActualOutX property

into the Variable property.

In addition, define a transition to the parameter screen for establishing connections. Follow the
same instructions as in chapter 5.3 “Navigating between screens”.

To implement the transition from the current screen to the screen for control of another Poseidon
peripheral, use the ButtonScreen element. Insert a link to the desired screen into the element’s

GoToScreen property and change the Text property according to the desired screen, e.g. “Blinds”.

The resulting screen should look like this:

Fig. 63 – Lighting settings screen

8.1.4 Blinds settings screen
Create the screen by duplicating the lighting settings screen. Afterwards, change all text fields on
the screen to match the new elements.

Change Label text to “Position”.

Add a link to the Position property of the P8R_Roll element into the Variable property of the

SelectButton element.

The currently set position of blinds can be loaded through the ActualPosition property of the

P8R_Roll object. Therefore, add a link to the ActualPosition property into the Variable

property of the NumericView element.

To return to the lighting settings screen, insert a link to that screen into the GoToScreen property.

Additionally, change the Text property accordingly, e.g. “Lighting” (transition to the lighting

screen).

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 54/56

The resulting screen should look like this:

Fig. 64 – Blinds position settings screen

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

 55/56 ap0047_en_03

9 Technical support
The AMiT Technical Support Department provides all information regarding communication in
ARION network. The Technical support is best contacted via e-mail at support@amit.cz.

DESIGNING APPLICATIONS FOR ON-WALL CONTROLLERS

ap0047_en_03 56/56

10 Warning
In this document, AMiT, spol. s r. o. provides information as it is, and the company does not
provide any warranty concerning the contents of this publication and reserves the right to change
the documentation content without any obligation to inform anyone or any authority about it.

This document can be copied and redistributed under the following conditions:

1. The whole text (all pages) must be copied without making any modifications.

2. All redistributed copies must retain the AMiT, spol. s r. o. copyright notice and any other
notices contained in the documentation.

3. This document must not be distributed for profit.

The names of products and companies used herein may be trademarks or registered
trademarks of their respective owners.

	1 Definitions of terms
	2 On-wall controllers
	3 Sample application design for AMR-OP70C
	3.1 Creating a project
	3.2 Defining internal variables
	3.3 Definition of the protocol and the variables intended for communication
	3.3.1 Communication protocol definition
	3.3.2 Definition of variables for data exchange with the control system
	3.3.3 Mapping variables into registers

	3.4 Designing the AMR-OP70C the operating application of the controller
	3.5 Screen design for AMR-OP70C
	3.5.1 Setting the heating mode and the fan mode
	3.5.2 Showing the temperature measured by AMR-OP70C
	3.5.3 Displaying static text

	3.6 Generating the application for AMR-OP70C
	3.7 Loading the application in AMR-OP70C

	4 Operation example of AMR-OP70C in stations with NOS
	4.1 Example – ARION protocol
	4.1.1 Definition of AMR-OP70C in DetStudio
	4.1.2 Method of communication with AMR-OP70C
	4.1.3 Designing a programme for communication with AMR-OP70C

	4.2 Example – MODBUS RTU protocol
	4.2.1 Definition of AMR-OP70C in DetStudio
	4.2.2 Method of communication with AMR-OP70C
	4.2.3 Designing a programme for communication with AMR-OP70C

	5 Extending application functions for AMR-OP70C
	5.1 Setting communication parameters for AMR-OP70C on the display
	5.1.1 Protocol type choice screen
	5.1.2 AMR-OP70C address settings screen
	5.1.3 Communication speed settings screen
	5.1.4 Parity settings screen
	5.1.5 Service menu screen

	5.2 Displaying the control system time on AMR-OP70C
	5.2.1 Adjusting the control system application (ARION)
	5.2.2 Adjusting the control system application (MODBUS RTU)
	5.2.3 Adjusting the application for AMR-OP70C

	5.3 Navigating between screens

	6 Appendix A
	6.1 Using standalone communication objects
	6.1.1 Object ArionSlave
	6.1.2 Object ModbusSlave

	7 Appendix B
	7.1 Operation of AMR-OP60 buttons
	7.1.1 Keyxxx elements usage
	7.1.2 Using OP60kbd with predefined buttons
	7.1.3 Using OP60kbd with user-defined buttons

	8 Appendix C
	8.1 AMR-OP70RHP operation with the Poseidon© interface
	8.1.1 Designing the Poseidon operation code
	8.1.2 Screen for creating connections within the Poseidon network
	8.1.3 Lighting settings screen
	8.1.4 Blinds settings screen

	9 Technical support
	10 Warning

