APO0013
APPLICATION NOTE

AtouchX Parametrization

Abstract

The Application note deals with a demonstration of application of AtouchX communication

control in the environment of Microsoft Visual C# Express and in Microsoft Excel.

Author: Michal Kupéik, Zbynék Riha

File: ap0013_en_04.pdf

Attachments

File content: ap0013_en_03.zip

ap0013 p01_en_02.zip

Projects for control systems

ap0013_p02_en_02.xls

Excel — reading and writing simple variables

ap0013 p03 _en_02.xls

Excel — reading and writing matrices

ap0013_p04_en_02.xls

Excel — editing time in the control system

ap0013 p05 en_02.xls

Excel — reading the archive

ap0013_p06_en_02.xls

Excel - reading the operations journal

ap0013 p07_en_02.xls

Excel — communication with two identical control systems in a
network

ap0013 p08 en_02.xls

Excel — active communication between a control system and PC

ap0013_p09_en_02.zip

C# —reading and writing a simple variable

ap0013_p10_en_02.zip

C# - reading and writing matrices

ap0013 pll_en_02.zip

C# — editing time in the control system

ap0013_pl12_en_02.zip

C# - reading the archive

ap0013 pl13_en_02.zip

C# - reading the operation log

ap0013_pl14 en_02.zip

C# — communication with two identical control systems in a network

ap0013 pl15_en_02.zip

C# — active communication between the control system and PC

ap0013 pl6_en_01.zip

Delphi — a sample application, other useful information

Copyright (c) 2018, AMiT®, spol. s r.o.
amitomation.com

1/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

Contents
(O70] 0] (=] 0] £ 7P P PP TP PPUPPPPPRPPIN 2
LR EAY S 0T T T3 (o] SR 3
Related dOCUMENTALIONcciiiiiiiiiiiiiiiiii ettt 3
1 DefiNitiONS OFf TEIMIS .ciiiiiiiiiiiiie e 4
2 ALOUCN X 5
2.1 ALOUChX INSTAALION ... 5
3 PN (oYU o] 0 D o F= 1= T g L= 1 2= 11 [0 o [6
3.1 Exporting parametrization files from DetStudio............ooovvviiiiiiiiiiiiiiiiiiiieeee 6
4 Sample applications in MiCroSOft EXCelcoooviiiiiiiiiiiii e 9
4.1 MiICroSOft EXCEI 2013 SEIING....ciiiiiiiieiiiiiiiiiiii ettt 9
4.2 Creating an APPIICALION.u e it 11
4.2.1 ATOUCNAPP eFINITION ... 11
4.2.2 Initialization to connect with the DB-Net network (DB-Net/IP) ..., 11
4.2.3 A sample method NOt CAUSING QN EVENT.......ccoeiiieieeeeeee e 12
4.2.4 A sample method CauSING @N EVENT.......ccooi oo 13
425 Communication terMiNAtiON oottt eeiieieiiiees e e e e e e e et e e e e e e eeaereaaraaeeaeeaannes 14
4.2.6 WOrking With @rChiVES ... 14
ArChive INItIALIZATIONceeeeeee e e e e e e e e e e 15
Enabling archive FUNCHIONooviiiiiiiiiiieeeeeee e 15
Saving an archive SAMPIEuuuiiiiiiii bbb 15
Termination of the AtouchArch object actiVity ..., 16
5 Sample applications in Microsoft Visual C# EXPresSsSuuuvuvveviiiimiiiiiminiiiiiiiniinninnnn. 17
5.1 VisU@l CH# EXPrESS SEIINGS . uuui ittt ee e e e et s e e e e e e e et e e e e e e e e e eaeaaa s 17
5.2 Creating an apPliCAtION...........ouuiiiiii e e e e e e e e e e aaane 19
L2 R AN (o 10 o1 o VY o o o (1 {1 V1 (T] o KPS PPSOTSSP 20
5.2.2 Initialization to connect with the DB-Net network (DB-Net/IP).........cccccoeeviieiiiiiiiiiiiiieeeeenen, 20
5.2.3 A sample method Not CausiNg an EVENL...........ceiiiiiiiiieice e 22
5.2.4 A sample method causing an EVENL...........ooouiiiiiiii e e 23
525 CommuniCatioN tEIMUNATIONuuuueeuiiiiiiiieiiieiieieeeeeeaeeeeeeeeeesaeaeeeeeeaeeseeesesesenessensnsnsnsnnnnnnes 26
5,26 WOrking With @rChiVEScooiiiiiiiii e e e e e 26
Archive INItIALIZALION ... 26
Enabling archive fUNCLION ... e 27
Saving an archive SAMPIE ... a e e aaaae 27
Terminating archive FUNCHIONuieii e 28
Termination of the AtouchArch object acCtiVity ... 28
6 APPENDIX A ..ottt 29
6.1 Conversion of variable tyPeS IN CHuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiebibbe bbb reeaeeeeaee 29
7 APPENDIX B ...ttt ettt bttt 30
7.1 ALOUChX IN DEIPNI. ..o 30
8 TECNNICAI SUPPOIT . 31
9 VBN e 32

ap0013_en_04 2/32

ANIT

ATOUCHX PARAMETRIZATION

Revision history

Version Date Changes by Changes
001 22. 06. 2009 | Riha Zbynék, New document.
Kupcik Michal

002 02. 01. 2013 | Riha Zbynék Pictures changed, textBox (ErrText) names unified in
chapter 5

003 11. 05. 2017 | Kupcik Michal Images modified, chapter 5.1 amended.

004 07. 02. 2018 | Riha Zbynék The reference to the object AtouchXArchive
cancelled in applications for Excel.

Related documentation

1. Help tab in the PseDet section of the DetStudio development environment
file: Psedet_en.chm

2. Help tab in the AtouchX communication controller
file: AtouchX.chm

3/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

1 Definitions of terms

DetStudio
A development environment by the company AMIT serving for control systems parametrization.
This environment is freely accessible at amitomation.com.

Station
Control system or PC in the network DB-Net(/IP).

ap0013_en_04 4/32

http://amitomation.com/

M\ﬂ_ ATOUCHX PARAMETRIZATION

2 AtouchX

AtouchX is a communication controller that provides connection between control systems and
applications on PC. AtouchX is the perfect means for all programmers who develop their own
applications on PC and need to provide data transfer from / to AMIT’s control systems. It includes
several ActiveX objects that are designed for full access to data in control systems. Apart from
a basic data transfer between the control systems and applications on PC, it also supports so
called “local archives”, date and time transfers, and also provides detection of station status and
other functions.

All objects in the AtouchX library have functional character (interface). In practice, this means that
objects have no properties (or only a few properties of a rather functional nature) and they are
handled exclusively by means of methods (functions).

2.1 AtouchX installation

The AtouchX communication controller installation file is available for download free of charge at
amitomation.com. After the installation launches, an installation wizard opens in which we specify
the path of locations where sample applications and help section for the communication controller
are to be installed. Libraries that AtouchX uses for communication are always installed into the
Windows system directory.

2 AtouchX 2.40 Setup

Zwolte umisténi instalace

Zvolte slozky, do kkeré bude program Atouchi nainstalowvan,

Setup nyni nainstaluje program Atouchy do nasledujici slogky. Pro instalaci do jiné slozks
zvalte 'Prochazet’ a wyberte jinou sloZku, Pro pokracovani kliknéte na 'Dalar,

Cilowa sloZka

I C\Program Filestarim,aToUCH:| Prochazet. .. |

Potfebné misto: 2, 2ME6
Wolné misto: 5, 7GE

T spal, s,

< FpEk I Dalsi = I Skarno

Fig. 1 - AtouchX installation

5/32 ap0013 _en_04

http://amitomation.com/

M\ﬂ_ ATOUCHX PARAMETRIZATION

3 AtouchX parametrization

The communication controller parametrization can be performed by means of three *.ini files
(among other methods) which we use to specify a list of control system variables to the controller
from / to which we want to read / write, and the interface by means of which we want to
communicate with the control system (a serial line, Ethernet, etc.) and the description of archives
or the operation log. The structure of these files is described in more detail in the Help section to
the AtouchX communication controller.

3.1 Exporting parametrization files from DetStudio

We create parametrization files directly by means of the DetStudio development environment using
the menu Tools / Export / Atouch.

Tools | Windows Help

Change Station

I| Export 4 Atouch
Ethernet device detection ControlWeb
AMR config AISE-dbf

AMER multidownload
AricnReglnspektor

D=Translatar

Options

Fig. 2 - Exporting parametrization files

By selecting the item Atouch, we open a window in which we specify the directory the
parametrization files should be exported into. We select the variables to be read / written and in
case work with archives from the control system is required we also define the archives.

ap0013 _en_04 6/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

Directary: | C\touch

Variables

MName Station Comment

ComCt_RgSt Insert request status
Com(Ct_State Communication status
ComZp_Rg5t Insert request status
ComZp_5State Communication status
CP_Tep_Cas Day plan time matrix
CP_Tep_Hod Day plan value matric
Eth_Cteni Ethemet (DB-MNet/IF) read variable from PC
Eth_Zapis F Ethemetu (DB-Net/IP) value that is written to PC act...
EthCt_FiqSt I Insert request status
EthCt_State I Communicatin status
EthZp_RgSt I Insert request status
EthZp_State | Communicatin status
Feast MI[3.14] Holidays
Mbx_i_hodnot Mi[2.3] Matrix of integer - values
PD_Data MI[1,408] Log data
PD_Index | Log index
StCas L Station time in DB-Met format
StState | DB-Nst/IP protocol - Statin state

Data

Arch1_DataF
Arch2_Datal, Arch2_Datal

Fig. 3 — Selecting directory to export parametrization files

Clicking the button “OK” closes the window “Select the list of variables from the database list” and
create two to three parametrization files HW.ini and SW.ini or ARC.ini in the directory of our choice.

7132 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

RN

Home Share View

@ = F | « Local Disk (&) » Atouch v O Search Atouch

~

"J:T Favourites B B B

B Desktop e ey £

4 Downloads _I."”_ S _I."”_ S _I."”_ S

2l Recent places - I(,_-_\" -I(,.-.\" (,.\'
> e

ARC OB HW
= Libraries

Fig. 4 — Created *.ini files

The file db.ini includes description of all database variables selected during the export. The HW.ini
file includes communication parameters for a connection with the control system. The ARC.ini file
contains descriptions of selected archives and the application operation log. Communication
parameters are generated according to communication set in the DetStudio development
environment.

ap0013 _en_04 8/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

4 Sample applications in Microsoft Excel

The Appendix to this Application note includes sample projects created in Microsoft Excel 2013
chart editor.

4.1 Microsoft Excel 2013 setting

In order to work with the AtouchX controller, it is necessary to enable working with macros in
Microsoft Excel and running the macros.

The AtouchX library in Excel can only be used in connection with the programming language
Visual Basic. We enter the Visual Basic editor by means of the Visual Basic button in the menu
Developer.

Hame Insert Page Layout Formulas Data Review View Developer 2 Tell me what you want to do
j D #7 Record Macro ‘ {:f? [— - Properties @ Map Properties 53 Import
] Use Relative References . -ET — Q] View Code 5] Expansion Packs Export
Visual [Macros Add Excel COM Insert Design Source
il Basic ! Macro Security ins Add-ins Add-ins ~ ~ Mode (2] Run Dialog Refresh Data
5 Code Add-ins Controls XML

Fig. 5 - Transition to the Visual Basic language editor

In the Visual Basic language editor, we need to tell Excel that we are going to work with the
AtouchX library, which we do by means of the menu Tools / References.

t Format Debug Bun | Tools
|E§:, References..,

Macros...

Options..,

bl T

VBAProject Properties..,

Digital Signature...

Fig. 6 — Opening the References window

We open the window “References — VBA project” where we search the appropriate library and
select it.

9/32 ap0013 _en_04

ANIT

ATOUCHX PARAMETRIZATION

-

References - VBAProject

Available References:

.ﬁ.dl:ul:ue Reader FI|E F‘rewew Type Library -

.-5.F' Cllent 1.0 HEIpPanE T_.-'pe Library

AP Client 1.0 Type Library ﬂ
AppIdPolicyEngineApi 1.0 Type Library
AspMetMMCExt.dll

Assistance Platform Client 1.0 Data Services Type Lik
AT91Boot_DLL 1.0 Type Library +
ATL 2.0 Type Library

AtouchXArchive

AutoCAD Map MPolygon Type Library

AutaCANIOHecTEY Commaon 17.0 Tvne | ibrary
4 | mn [3

Priority

AMIT AtouchX Library 2,92

Location: C:YWindows\SysWowaHAtauch. dll

Language: Standard

0K

Cancel

Browse...

Help

Fig. 7 — Selecting the appropriate libraries

The window “Object Browser” tells us about the AtouchX library options; we open this window from
the menu View / Object Browser.

A

% Eile Edit View Inset Format Debug Bun Tools Add-lns Window
- b e EsEFY (7]
Project - VBAProject X| <Al Libraries> ~| |5 |

=& atpvbaen.ds (ATPVBAEN | |Eycel
&% VBAProject (Book1) Office

<All Libraries> ﬁ

embers of =globals=’

E- @ Microsoft Excel Objects stdole 'ﬂ'b?
fF) Sheet1 (sheet1) [JVBA ActiveCell
@ ThisWorkbook E VBAProject ActiveChart

Eﬁ VBAProject (FUNCRES.XL |8 Actions

[ActivePrinter

Fig. 8 - Displaying the list of AtouchX library objects

After we select the ATOUCHX library, the window “Object Browser” displays a list of the library’s
objects. Descriptions of these objects are available in the Help section that is installed together
with the AtouchX communication controller.

ap0013_en_04

10/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

4.2 Creating an application

In the project tree, we double-click the left mouse button e.g. on the item “Listl (Listl)”. An empty
form opens where we can enter the programme’s code.

4.2.1 AtouchApp definition

We are going to use the “AtouchApp” object for communication in sample applications. First, we
need to define the object type “AtouchApp”. We do so e.g. with the following code:

Public WithEvents ATC As AtouchApp

4.2.2 Initialization to connect with the DB-Net network (DB-Net/IP)

In order to initialize it, we create a macro that we name “Atouchlinitialization”.

Public Sub AtouchInitialization()
EndSub

In this macro, we first create a communication controller instance by means of the command “New”
(we create an object called “ATC").

Set ATC = New AtouchApp

In order to actually initialize the connect with the DB-Net network (DB-Net/IP), we use e.g. The
method “InitFromFile”. This method performs the network connection initialization by means of two
external files. In our case, they are called hw.ini and db.ini. The method also returns an error code.
We save this code into the global variable “Retrn” of Integer type.

Retrn = ATC.InitFromFile (ActiveWorkbook.Path & "\hw.ini", ActiveWorkbook.Path &
"\db.ini")

Subsequently, we find out whether the initialization went on successfully or failed. In case there
was an error in initialization, we open the window with the error message and we cancel the object
“ATC". If the initialization went on successfully, we write “Initialization OK” into the cell B4.

If Retrn <> arrOK Then
MsgBox "Connection to DBNet failed. " & vbCrLf & "Error number " & Hex$ (Retrn),
vbOKOnly
ATC.Done
Exit Sub
Else
Me.Cells (4, 2) = "Initialization OK"
End If

We insert the button into the MS Excel chart, change its text to “Initialization” and match it with the
macro we created.

11/32 ap0013_en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

Data Review View Developer
: - b/‘ Properties [té_
i a3 View Code

COM Insert Design _ Sourc
Add-ins = Mode (4] Run Dialog

Form Controls

Imitialisation

Fig. 9 - Inserting the button

After turning off the design regime, we click the button to initialize network connection to DB-Net
(DB-Net/IP).

4.2.3 A sample method not causing an event

We select method “Station Status” (finding out the station’s connection status) as a sample method
that does not cause an event. We create a macro again, and name it “StationStatus”.

Public Sub StationStatus()
End Sub

The guide says that the sytnax for the “StationStatus” method is as follows:
object.StationStatus (ByVal Station As Integer, ByRef INFO As Variant) As Integer

In our case, we use the object “ATC". The simplest way to find out what the correct entry is the
floating Help that displays automatically when we write commands.

ATC.3tationldtatus
StationStatus(Station As teger, INFC) As Integer

Fig. 10 — The floating Help
We define the variable “Station” type Integer that includes the number of the station the status of
which we want to find out and a variable “Info” type Variant.
Subsequently, we put the following code into the macro we created:

Station = INT(1) 'saving value 1 into Station variable
Retrn = ATC.StationStatus(Station, Info) 'event call

ap0013_en_04 12/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

Subsequently, we find out whether the method processing went on successfully or failed. In case
the processing failed, we display the window with the error message. In case the processing went
on successfully, we save the status and type of HW connection into cells C4 and C5.

If Retrn <> arrOK Then
MsgBox "Status query failed. " & vbCrLf & "Error number " & Hex$ (Retrn), vbOKOnly

Exit Sub

Else
Me.Cells (4, 3) = Info(0) 'saving HW connection type into cell C4
Me.Cells (5, 3) = Info(l) 'saving connection status into cell C5

EndIf

We enter the button into the MS Excel chart again. We change the button text to “Status” and
match it with the macro we created. After the network connection to DB-Net initializes successfully,
pressing the button will process the code contained in the macro.

4.2.4 A sample method causing an event

We select the method “NetGetData” as a sample method causing an event as it causes the event
“EndNetGetData”.

We create a macro using which we execute the command to read the variable value. We name the
macro “GetData”.

Public Sub GetData()
End Sub

In order to make the request for data reading, we use the “NetGetData” method which has the
following syntax:

object.NetGetData (ByVal WID As Long, ByVal Param As Long) As Integer

We enter the WID variable whose value we want to read from the control system into the cell B8 of
the MS Excel chart.

il 2] C
1
2
3
4
5
6
7 Wi Value
& > 1001 351

Fig. 11 - The cell for entering the WID value

We define the variable “WID” type Integer and the variable “Param” type Long. Subsequently, we
put the following code into the macro we created:

WID = Me.Cells (8, 2) 'reading the value of WID from cell B8 into
variable WID

Retrn = ATC.NetGetData (WID, Param) 'causing event

Me.Cells (2, 3) = Retrn ' saving the result of the event call into cell C2

13/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

The method reads the content of the variable the WID of which we entered into cell B8 (reading is
asynchronous) and after the reading is finished, the event “EndNetGetData” is caused. The event
syntax is as follows:

Private Sub object EndNetGetData ([index As Integer], ByVal WID As Long, ByVal Result
As Long, ByVal Param As Long, ByVal DATA As Variant)

The method “EndNetGetData” announces the result of the communication and the value of the
variable with WID required.

Private Sub ATC_EndNetGetData (ByVal WID As Long, ByVal Result As Long, ByVal Param As
Long, ByVal DATA As Variant)

First, we find out the communication result. If the communication resulted in an error, we display
the window with the corresponding error message. If the communication succeeded, we save the
value of the variable read into cell C8.

If ((Result And atfMaskstate) <> atfOk) Then
MsgBox "Communication failed. " & vbCrLf & "Error number " & Hex$ (Result And
atfMaskstate), vbOKOnly
Else
Me.Cells (8, 3) = DATA
End If
End Sub

We enter the button into the MS Excel chart again. We change its text to “Read Data” and match it
with macro “GetData”. After successful initialization of connection to the DB-Net network, pressing
the button will read the value of the scalar variable with WID 1001 into the cell C8.

425 Communication termination

Same as we initialized the connection to the DB-Net network (DB-Net/IP), we also have to end this
connection properly. In order to end the connection to the DB-Net network (DB-Net/IP), we use the
method “Done” with the following syntax:

object.Done () As Integer
We create a macro and name it “End”.

Public Sub End()
End Sub

The we perform a check in the macro to see whether the object “ATC” exists and in case it does
we cancel it and free up memory. The resulting code we enter into the macro will be as follows:

If Not (ATC Is Nothing) Then ATC.Done 'if the object exists, we cancel it
Set ATC = Nothing 'we free up memory

We enter the button into the MS Excel chart. We change its text to “End” and match it with macro
“End”.

4.2.6 Working with archives

In order to work with archives, we need to create an object type “AtouchArch”. We create it in the
same way we created the object “AtouchApp” in chapter 4.2.1 “AtouchApp definition”.

Public WithEvents ATCA As AtouchArch

Caution!
In order to work properly, the object requires that an object providing connection to DB-Net network
(DB-Net/IP) exists and works along with it.

ap0013_en_04 14/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

Archive initialization

In order to initialize it, we create a macro that we name “Archivelnitialization”.

Public Sub ArchiveInitialization()
End Sub

In this macro, we first create an archive instance using the command “New”.
Set ATCA = New AtouchArch

For the actual archive initialization, we use e.g. the method “InitFromFile”. This method performs
the archive initialization by means of an external file. In our case, we name it pd_arch.ini (the
structure is described in the Help section of the AtouchX communication control). The method also
returns an error code. We save this code into the global variable “Retrn” of Integer type.

Retrn = ATCA.InitFromFile (ActiveWorkbook.Path & "\pd_arch.ini")
We display the value of the “Retrn” variable in the MS Excel chart cell.
Me.Cells (2, 3) = Retrn

We enter the button into the MS Excel chart. We change the button text to “Arch Init” and match it
with the macro we created. After successful initialization of the connection to the DB-Net network,
the press of the button initializes the archive and the initialization result will be entered into cell C2.

Enabling archive function

After we enable the archive function, we create a macro that we call “ArcFun”.

Public Sub ArcFun()
End Sub

In our application, we will be using an automatic archive (for more information see Help section on
the AtouchX communication controller). We will use the “Control” method to enable the archive
function. The method syntax is as follows:

object.Control (ByVal AID As Integer, ByVal Run As Boolean) As Integer

We create a variable “AlID” type Integer in the macro and a variable “RUN” type Boolean. The code
we enter into the macro will be as follows:

AID 0 'archive number (see Help section on AtouchX)
Run = True 'enabling archive function
RetrnArc = ATCA.Control (AID, Run) 'Method for enabling archive function

We enter the button into the MS Excel chart. We change the button text to “Arch Start” and match it
with the macro we created. After the archive initializes successfully, pressing this button will enable
its function.

Saving an archive sample

We use the event “Sample” to save archive samples. We cause the event if one sample of an
automatic archive is available. The syntax is as follows:

Private Sub object Sample ([index As Integer], ByVal AID As Integer, ByVal DATA As
Variant)

Then we define the “Sample” event including the sample reception process. The code will then look
like this:

Private Sub ATCA Sample (ByVal AID As Long, ByVal DATA As Variant)

Dim SampleOK As Boolean 'Definition of a variable type Boolean
Dim AcceptOK As Integer 'Definition of a variable type Integer
Me.Cells (Radek, 1) = DATA(0) 'Saving the sample time into a cell

15/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

Me.Cells (Radek, 2) = DATA(1l) 'Saving the archive value into a cell
Radek = Radek + 1 'Moving to the next row
SampleOK = True 'We always accept the sample

AcceptOK = ATCA.Accept(AID, SampleOK) 'Sample acceptance verified
End Sub

In the event “Sample”, we need to use the method “Accept” in order to accept or reject a sample.
This method is described in the Help section on the AtouchX communication controller.

Termination of the AtouchArch object activity

Same as we initialized the archive, we also have to terminate it properly. In order to do so, we use
the method “Done” with the following syntax:

object.Done () As Integer

We enter the AtouchArch object termination e.g. Into the same macro as the termination of the
connection to the DB-Net network (DB-Net/IP). The we perform a check in the macro to see
whether the object “ATCA” exists and in case it does we cancel it and free up memory. The
resulting code we enter into the macro will be as follows:

If Not (ATCA Is Nothing) Then ATCA.Done 'if the object existed, we cancel it
Set ATCA = Nothing 'we free up memory

ap0013 _en_04 16/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

5 Sample applications in Microsoft Visual C#
Express

The Appendix to this Application note includes sample projects created in the Microsoft Visual C#
Express environment.

5.1 Visual C# Express settings

In order to launch the programme, we select the item File / New project from the main menu.
A window “NewProject” opens in which we select the item Windows Form Application and

change the name of the project created.

Recent Templates Sort by: [Default - | | Search Installed Templates Pl |
Installed Templates Tvpe: Vieual C&
: Ecﬁ Windows Forms Application Visual C# ype: Hisuatts
Visual C# = A project for creating an application with a
) = Windows Forms user interface
Online Templates .,Cﬁ WPF Application Visual C#
% Console Application Visual C#
;?_cﬁ Class Library Visual C#
e
chl| WPF Browser Application Visual C#
c#| Empty Project Visual C#

MName: MewProg

Fig. 12 - Creating a project in Visual C# Express

In order to be able to use an AtouchX library in the Visual C# Express environment, we first need
to add a reference to the corresponding ActiveX controls in the window “Solution Explorer”. We
achieve this by clicking the right mouse button on the Reference item and subsequently selecting

the item Add reference.

Solution Explorer - Solution 'MewProg' (1... » I X

2 | B F

(oA Solution ‘NewProg' (1 project)
= :E NewProg
[[=d| Properties

Add Reference. ..

AOd SEMVICE ReTerence. ..

Fig. 13 — Opening the References window

17/32 ap0013_en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

The window “Add Reference” opens in which we search and select the corresponding library in the
“COM” tab according to the following picture.

MET | COM | Projects | Browse | Recent|

Component Nar%e TypelLi.. Path

Active DS Type Library 1.0 CHAWindows\SysWOWb4d\activeds.tlb

Adobe Acrobat 7.0 Browser Con... 1.0 ChProgram Files (86 Common Files\Adobe\Acr..,

Adobe Acrobat 8.0 Type Library 1.1 ChProgram Files (x86)%Adobe\Reader 11.04Reader\...

Adobe Reader File Preview Type.. 1.0 C\Program Files (x86)\Adobe\Reader 11.04Reader...

AFormAut 1.0 Type Library 1.0 ChProgram Files (x86)%Adobe\Reader 11.0NReader\...

AgControl 3.0 Type Library 3.0 C\Program Files (x86)\Microsoft Silverlight'5.1.30..

AgControl 5.1 Type Libra 51 C:hProgram Files G561 Microsoft Silverlight’5.1.30,.,
: AMIT AtouchX Library 2,92 ! ChWindows'SysWowbd\ AtouchX.dll

AN _CUN _Interrace LU Type L., L. iFrogram Files ot intelilntel(R) Management ...

AP Client 1.0 HelpPane Type Lib... 1. ChWindows' Systern32Y HelpPaneProaxy.dll

AP Client 1.0 Type Library . ChWindows\HelpPane.exe

AppldPolicyEnginefpi 1.0 Type ... ChWindows'Systern3 2\ AppldPolicyEnginedpi.dll

|| cancel

Fig. 14 - Selecting the appropriate libraries

We verify the correct reference addition by unfolding the item References in the window “Solution
Explorer”. Here we find the item AtouchX.

Solution Explorer * 01X

= el
g Solution 'MewProg' (1 project)
4 7] NewProg
> =d| Properties

F W]l = =
T Iicrosort._sharp
3 System

<3 Systemn.Core
<3 Systermn.Data
<3 Systern.Data.DataSetExtensions
<3 Systern.Deployment
<3 Systern.Drawing
<3 Systern.Windows.Forms
<3 Systern.Xml
<3 Systern.Xml.Ling

. [2] Forml.cs

#] Program.cs

Fig. 15 - The reference to AtouchX has been added correctly

ap0013 _en_04 18/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

In order for all function of the AtouchX library to work properly in the user application, it is
necessary to set the property Embed Interop Types to the value False in this library.

Solution Explorer * 0 X
g Solution 'MewProg’ (1 project) *
4 _E NewProg 3
> [=d] Properties =‘
. &
43 ATOUCHX
A Wlicrosott.Usharp
43 System %
Properties * 0 x
Interop ATOUCHX Reference Properties -
8= 21 |l
(Mame) Interop ATOUCHX
Copy Local True
Culture]
Deccription AMIT AtonchX Library 2
e | [
FilE Type FCtven
Identity {BBBD9342-TEFF-11D3-
Isolated False
Resohved True
Strong Mame False
Yersion 1.0.00

Fig. 16 — Changing the value of the property Embed Interop Types
after marking the AtouchX library

5.2 Creating an application

We double-click the empty form. Doing so will get us into the window where we will write the
programme code.

First of all, we place the mouse cursor to the start of the code under the word “using”. Here, we
write:

using ATOUCHX;

The resulting code will look as in the following picture.

—lusing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Lling;
using System.Text;

using System.Windows.Forms;
(using ATOUCHX;)

Fig. 17 - Application of the word “using”

19/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

521 AtouchApp definition

In order to work with the object “AtouchApp”, we need to create its instance by means of the
command “New” already in the code part “public partial class Form1l : Form”. This part that opens
after we double-click on the created form also serves for writing declarations of other global
variables and objects.

The code for creating an instance of the “AtouchApp” object will therefore look as follows:

AtouchApp App = new AtouchZpp();

-lnamespace MNewProg

1
= public partial class Forml @ Form
1

AtouchApp App = new ;::J:1;::(j;)
- pubIic Forml(,

1

InitializeComponent();
b

Fig. 18 - Creating an instance of the “AtouchApp” object

5.2.2 Initialization to connect with the DB-Net network (DB-Net/IP)

We perform the initialization in the code part “Form1_Load”. In order to actually initialize the
connect with the DB-Net network (DB-Net/IP), we use e.g. The method “InitFromFile”. This method
performs the network connection initialization by means of two external files. In our case, they are
called hw.ini and db.ini. The method also returns an error code. We save this code into the global
variable “Err” type Integer and write its value in the form.

ap0013 _en_04 20/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

First, we switch back to the form design draft and select the item “TextBox” in the window
“Toolbox”.

s =

25/ Forml o)==

» All Windows Forms

4 Commen Controls
Pointer

Button
CheckBox
CheckedListBox
ComboBox
DateTimePicker
Label

LinkLabel
ListBox

ListView
MaskedTextBox
MonthCalendar
Motifylcon

MurnericUpDown

s331N0%5 e1e(]

m

HerHElEERE>

PictureBox

ProgressBar

RadicButton

B4 @ B Bl & ELES [

ToolTip
Fig. 19 - Placing the TextBox control into the form

We place it into the form and name it e.g. “ErrText” in the item “Name” in the window “Properties”.

Properties v 1 X
ErrText Systermn.Windows Forms TextBox -

“HEl =

= (ApplicationSettings) b
> _(DataBindings) |E|
((Mame) ErrText) M
ACCeptshetarn ralse
AcceptsTab False

AccessibleDescription

AccessibleMarmne

AccessibleRole Default

AllowDrop False -

Fig. 20 - Renaming the TextBox control

21/32 ap0013_en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

The method “InitFromFile” returns the error code as a number. However, the “TextBox” control
displays a text in the form (type String). That is why we first retype the variable “Err” by means of
the method “ToString()”. The resulting code will then look like this:

= private wvoid Forml_Load{cbject sender, Eventhr

{

gs e)

J/Initialization method for DB-net network communication.
App.VariantOnly = false;

Err = App.InitFromFile("hw.ini", "db.ini™)};

ErrText.Text = Err.ToString();

Fig. 21 - The initialization of the AtouchApp and the list of initialization results to the form

5.2.3 A sample method not causing an event

We select method “Station Status” (finding out the station’s connection status) as a sample method
that does not cause an event.

The guide says that the sytnax for the “StationStatus” method is as follows:
object.StationStatus (ByVal Station As Integer, ByRef INFO As Variant) As Integer

In our case, we use the object “App”. The simplest way to find out what the correct entry is the
floating Help that displays automatically when we write commands.

App.StationStatuas(
short IAtouchApp. StationStatus{short Station, ref object INFQ) |

Fig. 22 - The floating Help

The floating Help.shows that the VBA type Integer and Variant became type Short and Object in
C#. That is why we define two variables (whether global or local) type Short and Object that we
name e.g. “ShoStation” and “Objinfo”.

short ShoStation = 1; //we are determining the status of control system number 1
object ObjInfo = null;

We place the button to the form from the window “Toolbox”. We name it e.g. “ShowStat”. We will
initiate the method to determine the station status by pressing this button.

The method “StationStatus” also returns error code. We will enter this code to the “TextBox” control
that is already created and that we named “ErrText”.

The code entered into the event of pressing the button will then look like this:
Err = App.StationStatus(ShoStation,ref ObjInfo) ;

After executing this order, the variable type and content change to “Objinfo”. The guide to the
AtouchX communication controller states that it turns into a one-dimensional matrix consisting of
two cells.

Therefore, the following step is to verify whether this happened. In order to do that, we use a
condition testing the variable type:

if (ObjInfo is ushort[])

We test the ushort[] type since we know that values we may obtain range from 0 to 65535. We
write the remaining part of the code into the condition body.

ap0013_en_04 22/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

First, we need to create a new variable type ushort[], e.g. “Ushinfo”, into which we save the
variable “ObjInfo” that we need to retype using the expression (ushort[]).

ushort[] UshInfo = (ushort[])ObjInfo;

In order to display the content of both matrix controls in the form, we place two more controls type
“TextBox”. We name them “Textl” and “Text2”. By means of their property “Text”, we will write into
these two controls the matrix values converted to type String using the method “ToString”.

Textl.Text
Text2.Text

UshInfo[0] .ToString() ;
UshInfo[l].ToString() ;

The resulting code will look as in the following picture.

“{3NE»'-.-PI'DE.FDI'H‘|1 ~| &% button]
g =
- private wvoid ShowStat Click(cbject sender, Eventirgs e)
1

short Shostation = 1;

ocbject ObjInfo = null;

Err = App.5tationStatus(ShoStation, ref ObjInfo);
if (0bjInfo is short[])

1
ushort[] UshInfo = {(ushort[])0bjInfo;
Textl.Text = UshInfo[@].ToString();
Text2.Text = UshInfo[l].TeString();
b
¥
100 % = 4
Forml.cs [Design]® =
o= Forml = |- B[]

Fig. 23 —The code called in the event of pressing the button

524 A sample method causing an event

We select the method for variable reading “NetGetData” as a sample method causing an event as
it causes the event “EndNetGetData’.

The method “NetGetData” syntax is as follows:

object.NetGetData (ByVal WID As Long, ByVal Param As Long) As Integer

23/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

We create the button in the form in the way we learned previously and we put the following code
into this button:

Err = App.NetGetData (1001, 1);
ErrText.Text = Err.ToString();

This is how we programmed the value of the variable with WID 1001 to be read. The result of this
method's call is stored in the “Err” variable, which is displayed again in the “TextBox” control called
“ErrText”.

It is necessary to “turn on” the event “EndNetGetData” called forth by the method “NetGetData”. We
achieve this by entering the event name and sign += in the part of the programme headed “public
Form1()” and then push the TAB button twice. That will fill in the text for event initialization
automatically and create the body of the function to be launched upon the event call.

lf—] puklic Forml ()
{
InitializeCamronent (1«
App.EndHetGetData 4= new _Z.Z.::::'.'._Z.j:j:E"e:'.:3_E:’.:i'.Te:_“-='_:Z‘5.:';E"e:’.:I-IE.:'.:i'_e:tApp_EndNetGetDataJ}
= vold App EndNetGetData (int WID, int Result, int Param, object DATA)
{
|thr|:|w ney MNotImplementedException();
i

Fig. 24 - Creating an event

We delete the row beginning with “throw”. In the future, we replace this row with code to be
executed in case the event is called. Since we are working with an event that returns variable
value, it is expected we want to keep working with this value in a certain way. If this entailed
numerical or any other processing not requiring the value read to be written into the form, we write
this processing directly into the prepared operational body of the event. However, if the value read
has to be displayed directly on the form, simply writing

TextBoxX.Text
ReadData.Text

DATA.ToString() ;
DATA.ToString() ;

does not lead to a result. An error would always occur after running this part of code; it would be
caused by the application being divided into multiple threads. One thread provides the work with
the form and another thread operates the events. The aforementioned code makes the threads
collide.

In order to write the value read in the form, we need to take the following steps:

1. We create a delegate definition in the place of global variables. The delegate’s arguments list
all variables you will continue to work with. In our case, it will be WID of the variable read,
communication result, one supplementary parameter and data retrieved.

Syntax for writing is as follows:

private delegate void (return value; there are no returns in our case)
DelEndGetData (a name of our choice) (int WID, int Result, int Param, object DATA)
(variables transferred)

The delegate definition in our case will look like this:

private delegate void DelEndGetData (int WID, int Result, int Param, object DATA) ;
2. We use the method “this.Invoke” that uses the delegate from the previous row as arguments

and subsequently also a list of variables transferred.

this.Invoke (new DelEndGetData (App EndNetGetData), new Object[] { WID, Result,
Param, DATA });

ap0013_en_04 24/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

The event code is running in a different thread than the one providing the rendering window;
that is why it is necessary to use the command “invoke” to run the code for work in the window
into the rendering thread.

3. Based on the communication result, we write the value read or the error code on the form. In
case the communication went well, we find out (e.g. using the parameter “Param”) what
variable we communicated and depending on the “Param” value, we write the value read into
the appropriate text field.

The resulting code will look as in the following picture.

= public partial class Forml :

4

orm

//Delegate declaration for communication between threads.
1 . private delegate void DelEndGetData(int WID, int Result, int Param, object DATA);

/fNecessary objects and variables definition.
Atouchfpp App = new Atouchapp();

int Err;

Object Data = new Object();

= public Forml()

{

InitializeComponent();

/fafter-communication event handler initialization. When App.xxx += is written and then

//the Tab key is double pressed, the huert code block is created automatically.

App.EndNetGetData += new _IAtouchAppEvents_EndNetGetDataEventHandler{App_ EndNetGetData);
¥

= void App_EndNetGetData(int WID, int Result, int Param, object DATA)

f

;2 if (this.InvokeRequired)

{
/fThe code is running in a different thread than in the UI thread. Therefore it is necessary
//to use the Invoke method for thread-safe call on form controls.
this.Invoke(new DelEndGetData(App_EndNetGetData), new Object[] { WID, Result, Param, DATA });
return;

i

//The code is running in the UI thread here and it is possible to call on form controls.
/fCall on a form control after a read request execution.
:3_ if ((Result & (Intl6)AtouchX Communication_State.atfOk} != @)
{ //Communication ended OK.
ComText.Text = "OK";
switch (Param)
{
case 1:
ReadInt.Text = DATA.ToString();
break;
case 2:
ReadlLon.Text
break;
case 3:
ReadFlo.Text = DATA.ToString();
break;

DATA.ToString();

¥

glze

{ //Communication ended with error.
ComText.Text = Result.ToString();

h

Fig. 25 - Three steps to write the value into the form

25/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

525 Communication termination

Same as we initialized the connection to the DB-Net network (DB-Net/IP), we also have to end this
connection properly. In order to end the connection to the DB-Net network (DB-Net/IP), we use the
method “Done” with the following syntax:

object.Done () As Integer

We create a button and name it “End”. We insert the following code into the event caused by
pressing this button:

App.Done() ;
this.Close();

This terminates the communication.

5.2.6 Working with archives

In order to work with archives, we need to create an instance of the object “AtouchArch”. We create
it in the same way we created the instance of the object “AtouchApp” in chapter 5.2.1 “AtouchApp
definition”.

AtouchArch AArch = new AtouchArch() ;

é public partial elass Forml @ Form
{

Atouchbreh Ahreh = new Ltouchirchi) :

int Err:
private delegate woid DelENGetDats (obiject DATL)

Fig. 26 - Creating an instance of the AtouchArch object

Caution!
In order to work properly, the object requires that an object providing connection to DB-Net network
(DB-Net/IP) exists and works along with it.

Archive initialization

For the actual archive initialization, we use e.g. the method “InitFromFile”. This method performs
the archive initialization by means of an external file. In our case, we name it PD_Arch.ini (the
structure is described in the Help section of the AtouchX communication control). The method also
returns an error code. We save this code into the global variable “Err” type Integer.

Err = AArch.InitFromFile("pd arch.ini");

We display the value of variable “Err” in the “TextBox” control named “ArcErr” that we placed on the
form.

ArcErr.Text = Err.ToString();

The resulting archive initialization code will then look like this:

ap0013 _en_04 26/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

- private wvoid Forml_Load(cbject sender, Eventirgs e)

1
//Initialization method for DB-net network communication.
Err = App.InitFromFile("hw.ini", “db.ini");
if {(Err == (Intl6)Atouch¥_Error_Code.arr0k)
1
fAIndtiglization method for archive description load.
Err = AArch.InitFromFile("PD_Arch.ini™};
¥
ErrText.Text = Err.ToString();
b

Fig. 27 - Archive initialization

This object needs to have events “Completed” and “Sample” defined in order to work to the full
extent. Therefore, we write the code “ObjectName.EventName +=" into the part of the programme
“public Form1()” and press the TAB button twice.

public Forml ()

{
InjtialireComponent (] ;
Lirch.3ample += new TitouchlrchEvents SampleEventHandler (Alrch Sample) ;
Lirch.Completed += new TAitouchirchEvents CompletedEventHandler (Airch Completed):

Fig. 28 - Defining events for AtouchArch
We later put the method “Accept” into the “Sample” event code so that the sample gets
verified/rejected after accepting the value and another sample could be accepted. We later put the
method “Control” into the “Completed” event code in order to determine the archive termination.

Enabling archive function

In our application, we will be using an automatic archive (for more information see Help section on
the AtouchX communication controller).

We will use the “Control” method to enable the archive function. The method syntax is as follows:
object.Control (ByVal AID As Integer, ByVal Run As Boolean) As Integer

We insert the button on the form and we put the following code into the event of pressing this
button:

Err = AArch.Control (0, true); //Enabling Archive Function
ArcErr.Text = Err.ToString(); //Displaying the code that the method returns

By pressing the button, we enable the archive function with AID O (see Help section for the
AtouchX communication controller).

Saving an archive sample

We use the event “Sample” to save archive samples. We cause the event if one sample of an
automatic archive is available. We have already defined this event in subchapter “Archive
initialization” and it is necessary to also use the method “Accept” in it in order to verify or reject the
sample. This method is described in the Help section on the AtouchX communication controller.

AArch.Accept (0, true); //Accepting a sample from the archive AID = 0 (See AtouchX
Help)

27/32 ap0013_en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

The resulting code of the entire event will look as in the following picture.

é vold ARrch Sample (int ATID, cbject DATA)
{

if (DATA is object[])

{

//Hew data processing

(7 LAirch.,.hAccept (0, True);)

Fig. 29 - Confirming the acceptance of a new sample

Terminating archive function

We can perform the archive termination in the event “Completed” that is called in case the archive
does not contain any new samples to be read. We have already defined this event in subchapter
“Archive initialization”. After terminating the archive function, we use the aforementioned method
“Control”. The resulting code of the entire event will look as in the following picture.

vold Adrech Completed(int ATID, int Samples)
i
birech.Control (0, false):

Fig. 30 - Terminating the archive run

Termination of the AtouchArch object activity

Same as we initialized the archive, we also have to terminate it properly. In order to do so, we use
the method “Done” with the following syntax:

object.Done () As Integer

We enter the AtouchArch object termination e.g. into the event of pressing the same button as in
case of termination of the connection to the DB-Net network (DB-Net/IP). The resulting code we
enter into the event will be as follows:

AArch.Done(); // terminating AtouchArch activity
App.Done() ; // terminating AtouchApp activity
this.Close(); // closing the form

ap0013 _en_04 28/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

6 APPENDIXA

6.1 Conversion of variable types in C#

This issue may occur e.g. When using methods “AtouchApp” that write values (of variables, time)
from PC to control systems. The guide states that some methods (e.g. “NetPutData” and
“NetPutTime”) send values according to VBA in variables type Variant. In C# the equivalent type is
Object.

In order for a control system to be able to process the input data and communication transmission
did not end up in an error, the value in this object variable has to be suitably converted. This is best
done with the “Convert” method.

Type Integer in the control system is of 16 bits, therefore we use conversion as follows:
Convert.ToIntl6 (source_variable).

Similarly, we convert the type Long by means of:

Convert.ToInt32(source variable).

Type Float in the control system has an equivalent in C# — type Single:

Convert.ToSingle (source variable).

Example

We have the “TextBox1” control on the form and a variable “Data” type Object in the programme.
Our goal is to read the number from the “TextBox1” control and write this value in the control
system into the variable type Integer with WID 1001. Therefore, we use the following entry:

Data = Convert.ToIntl6 (TextBoxl.Text) ;
Err = App.NetPutData (1001, 1, Data);

Another type requiring conversion is the time format. It is type DateTime both in VBA and in C#. If
we want to read time from a control on the form where it is displayed in String type, we use the
“Convert” method again, this time with function “ToDateTime(source_variable)”.

Example

We want to synchronize time in the control system and in the PC. The time synchronization
between the control system and the PC takes place if we write the time “1.1.1980 0:00:00” into the
control system.

Solution:

DateTime DTCas = Convert.ToDateTime (TextBoxl.Text) ;
Err = App.NetPutTime(l, 1, DTCas)

Where the “TextBox1” control will host the string 1.1.1980 0:00:00.

29/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

7/ APPENDIX B

7.1 AtouchXin Delphi

The procedure of running AtouchX in Delphi Standard version 5.00 (Build 5.62).

First, we need to “teach” Delphi to recognize the object “AtouchApp” specifically. We achieve that
using the command Project / ImportTypeLibrary. A window pops up that includes a list of all
ActiveX libraries registered in its upper half. We may also add unregistered libraries by means of
the button Add. If we installed the AtouchX library properly, this list will feature the item “AMIT
AtouchX Library 1.0” and we select it. In the lower part of the window, we leave the selected item
“‘Generate Component Wrapper” and close the window by clicking the button CreateUnit. Doing
leads Delphi to create the file ATOUCHX_TLB.PAS in the “Imports” subdirectory and the file
“encapsulates” all ActiveX objects into Delphi objects.

However, a small problem occurs during generation. AtouchX library objects use parameters with
names “Type”, “Set” and “Result”. “Type” and “Set” are Delphi keywords and Delphi supplies them
with an underscore on the front during conversion. However, “Result” is not a keyword, so Delphi
leaves it unchanged. But the name “Result” is used to mark function return values and the names
conflict. It is necessary to remove the problem manually. The modified file ATOUCHX_TLB.PAS is
a part of the file ap0013_pl16_en_xx.zip. Copying the file into the “Imports” subdirectory should
teach Delphi to recognize objects from AtouchX library. Beware — it is a generated file that
generates again and again with repeated imports or renewals, which removes the changes made
manually (“Result” =>“_Result”)

After the import, the object type “TAtouchApp” is available. If we create its instance, we can call its
services but we are not able to catch its events yet, despite the fact that the object has everything
ready to use them. The object contains private variables with names type FOnXXX (e.g.
“FOnEndRegldentify”) that are supposed to contain indicators to functions called upon the event
arrival. According to definitions, the variables are type “object functions” (see for example the
declaration type “TAtouchEndReqldentify”) so we need to perform the following to be able to
continue:

We create a descendant object “TAtouchApp”. In this object, we define the function with a
prototype corresponding to the event function and we provide that the function is matched into the
variable FOnXXX during the object creation. If we write our code into the given function, it will get
called upon the event.

To illustrate this situation, the file ap0013 pl6 en_xx.zip also features the source code with the
connection verified (see file UNIT1.PAS).

We define the object “TMyAtouchApp” as the descendant of “TAtouchApp”. We re-define the
“Create” constructor and define a new function “ENI” (as in “EndNetldentify”). The “Create”
constructor calls the ancestor's constructor and then only matches the “event function” into the
“event variable”. The “ENI” function then processes the incoming event — apart from a short beep, it
also checks whether the event announces a successful identification reading — and if it foes, the
data retrieved is displayed. When creating the main form, we create the object “ATC” type
“TMyAtouchApp” and initialize it (we use complete paths that we have to rewrite according to our
location) by means of the testing NULL connection. When cancelling the form, we cancel the object
“ATC".

A sample application for Delphi including other useful information is included in the file
ap0013 _pl16_en_xx.zip that is included in Appendices to this Application note.

ap0013 _en_04 30/32

M\ﬂ_ ATOUCHX PARAMETRIZATION

8 Technical support

All information on using the AtouchX communication controller will be provided by the technical
support department of the company AMIT. Do not hesitate to contact the technical support via
e-mail using the following address: support@amit.cz.

31/32 ap0013 _en_04

M\ﬂ_ ATOUCHX PARAMETRIZATION

9 Warning

AMIT spol. s r.o. does not provide any warranty concerning the contents of this publication and
reserves the right to change the documentation without any obligation to inform about it.

This document can be copied and redistributed under the following conditions:
1. The whole text (all pages) must be copied without making any modifications.

2. All redistributed copies must retain the AMIT, spol. s r. 0. copyright notice and any other notices
contained in the documentation.

3. This document must not be distributed for profit.

The names of products and companies used herein may be trademarks or registered
trademarks of their respective owners.

ap0013 _en_04 32/32

	1 Definitions of terms
	2 AtouchX
	2.1 AtouchX installation

	3 AtouchX parametrization
	3.1 Exporting parametrization files from DetStudio

	4 Sample applications in Microsoft Excel
	4.1 Microsoft Excel 2013 setting
	4.2 Creating an application
	4.2.1 AtouchApp definition
	4.2.2 Initialization to connect with the DB-Net network (DB-Net/IP)
	4.2.3 A sample method not causing an event
	4.2.4 A sample method causing an event
	4.2.5 Communication termination
	4.2.6 Working with archives

	5 Sample applications in Microsoft Visual C# Express
	5.1 Visual C# Express settings
	5.2 Creating an application
	5.2.1 AtouchApp definition
	5.2.2 Initialization to connect with the DB-Net network (DB-Net/IP)
	5.2.3 A sample method not causing an event
	5.2.4 A sample method causing an event
	5.2.5 Communication termination
	5.2.6 Working with archives

	6 APPENDIX A
	6.1 Conversion of variable types in C#

	7 APPENDIX B
	7.1 AtouchX in Delphi

	8 Technical support
	9 Warning

