
AP0008
APPLICATION NOTE

 1/45

Copyright (c) 2019, AMiT
®
, spol. s r. o.

amitomation.com

Communication in MODBUS RTU network (PseDet)

Abstract

The Application note describes the use of MODBUS RTU protocol in PseDet control
systems using a table definition. The Application note deals with both communication with
other AMiT products in Slave mode as well as with communication with a superior Master
unit.

Author: Zbyněk Říha
File: ap0008_en_06.pdf

Attachments

File contents: ap0008_en_06.zip

modbs_p1_en_06.dso Example of a control system parametrization as master.

modbs_p2_en_05.dso Example of a control system parametrization as slave.

modbs_p3_en_05.dso Programme operation DMM-DI24.

modbs_p4_en_05.dso Programme operation DMM-DO18.

modbs_p5_en_05.dso Programme operation DMM-RDO12.

modbs_p6_en_05.dso Programme operation DMM-AI12.

modbs_p7_en_05.dso Programme operation DMM-AO8x.

modbs_p8_en_05.dso Programme operation DMM-PDO6Ni6.

modbs_p9_en_02.dso Programme operation DMM-UI8DO8.

modbs_p10_en_02.dso Programme operation DMM-UI8RDO8.

modbs_p11_en_02.dso Programme operation DMM-UI8AO8U.

modbs_p12_en_02.dso Programme operation AMR-OP7x (RH) / AMR-OP6x / AMR-OP4x /
AMR-OP3xA(RH).

modbs_p13_en_01.dso Programme operation AMR-OP7xC.

modbs_p14_en_01.dso Programme operation AMR-OP7xRHC.

modbs_p15_en_01.dso Programme operation AMR-OP40(RH)C.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 2/45

Contents

Contents .. 2

Revision history ... 5

Related documentation ... 5

1 Definitions of terms ... 6

2 MODBUS protocol ... 7

2.1 Supported MODBUS functions .. 7

3 Connecting the communication network... 8

4 Time conditions in the network .. 10

4.1 Communication period .. 10

Example .. 10

4.1.1 Communication priorities ... 10

Automatic Read priority ... 10

Automatic Write priority ... 11

Manual communication priority .. 11

4.1.2 Gathering communication frames .. 12

Example .. 12

4.2 Communication in the event of a connection failure... 12

4.3 Connection failure detection in modules DMM-xxx .. 13

5 Control system as Master ... 14

5.1 Communication definition .. 14

5.2 Definition of a Slave station and data points for communication 15

5.3 Automatic communication ... 16

5.4 Manual communication ... 17

5.5 Communication statuses ... 18

5.6 Example of a control system parametrization as Master .. 19

6 Control system as Slave ... 21

6.1 Communication definition .. 21

6.2 Definition of data points for communication ... 22

6.3 Communication statuses ... 22

6.4 Example of a control system parametrization as Slave .. 22

7 Appendix A .. 25

7.1 Compatibility with communication initialization via modules ... 25

7.1.1 MODBUS Master .. 25

7.1.2 MODBUS Slave .. 25

8 Appendix B .. 26

8.1 Programme operation DMM-xxx .. 26

8.1.1 DMM-DI24 ... 26

Working with classic digital inputs ... 26

Working with counter inputs .. 26

8.1.2 DMM-DO18 ... 27

Working with classic digital outputs ... 28

Working with outputs in PWM mode .. 28

Retroactive reading of outputs and PWM parameters ... 28

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 3/45 ap0008_en_06

8.1.3 DMM-RDO12 .. 29

Working with digital outputs ... 29

Retroactive reading of outputs ... 29

8.1.4 DMM-AI12 ... 29

Working with analogue inputs .. 30

8.1.5 DMM-AO8x ... 30

Working with analogue outputs ... 31

Working with LED .. 31

Retroactive reading of outputs and LED behaviour parameters 31

8.1.6 DMM-PDO6NI6 ... 32

Working with RTD inputs ... 32

Working with classic digital outputs ... 33

Working with outputs in PWM mode .. 33

Retroactive reading of outputs and PWM parameters ... 33

8.1.7 DMM-UI8DO8 ... 33

Working with analogue inputs .. 34

Working with digital inputs ... 34

Working with digital outputs ... 34

Retroactive reading of outputs ... 35

8.1.8 DMM-UI8RDO8 ... 35

Working with analogue inputs .. 36

Working with digital inputs ... 36

Working with digital outputs ... 36

Retroactive reading of outputs ... 36

8.1.9 DMM-UI8AO8 .. 36

Working with analogue inputs .. 37

Working with digital inputs ... 37

Working with analogue outputs ... 37

Working with LED .. 38

Retroactive reading of outputs and LED behaviour parameters 38

9 Appendix C .. 39

9.1 Programme operation AMR-OPxx ... 39

9.1.1 AMR-OP7x(RH) / AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH) 39

Processing the status after a controller restart or a communication failure 39

Loading new values from the controller ... 40

Writing actual values into the controller ... 40

9.1.2 AMR-OP7xC ... 40

Processing the status after a controller restart or a communication failure 41

Loading new values from the controller ... 41

Writing actual values into the controller ... 41

9.1.3 AMR-OP7xRHC .. 42

Processing the status after a controller restart or a communication failure 42

Loading new values from the controller ... 42

Writing actual values into the controller ... 42

9.1.4 AMR-OP40(RH)C .. 43

Processing the status after a controller restart or a communication failure 43

Loading new values from the controller ... 43

Writing actual values into the controller ... 43

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 4/45

10 Technical support ... 44

11 Warning .. 45

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 5/45 ap0008_en_06

Revision history

Version Date Changes by Changes

001 30. 04. 2008 Říha Z. New document.

002 13. 04. 2010 – Descriptions in module use examples modified,
sample applications modified, table with
communication results revised, chapter 7 modified.

003 20. 04. 2012 – Chapter 7.1.1 complemented with information on the
use of matrices in the module RmtDef. Sample
applications created in DetStudio version 1.7.0.

004 05. 08. 2013 – Chapter 5.2 modified, new examples added, example
descriptions in chapter 8 modified Examples created
in DetStudio version 1.7.3.44.

005 27. 01. 2015 – Related documentation modified, chapters 7.1.5,
8.11, 8.12 and images modified.

006 05. 02. 2019 Kupčík M. Overall revision of the document.

Related documentation

1. Help tab in the PseDet section of the DetStudio development environment
file: PseDet_en.chm

2. Datasheet for the module DMM-xxx
file: dmm-xxx_d_en_xxx.pdf

3. Operation manual for AMR-OPxx
file: amr-opxx_g_en_xxx.pdf

4. Description of the basic sample application for AMR-OP3xA
file: ta-op3x_fw01m_en_xxx.pdf

5. Application note AP0016 – Principles of RS485 interface usage
file: ap0016_en_xx.pdf

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 6/45

1 Definitions of terms

PseDet control system
They are control systems and terminals made by AMiT in which process algorithms are
programmed in a section of the DetStudio environment called PseDet. E.g. AMiNi4DW2, ADiS,
AMAP99W3 or APT4000W3.

Master station
This station actively communicates with Slave stations. There is only a single Master station on
a single communication interface.

Slave station
It is a station with a unique address which passively listens on the communication interface and
responds only after receiving a particular frame from the Master. There may be up to 247 Slave
stations.

RS485
It is a half-duplex serial bus enabling communication of multiple stations at a single signal pair. The
maximum number of stations connected on a single segment depends on the device type. The
number ranges from 32 to 256. More information is available in the document AP0016 – Principles
of RS485 interface usage.

Data point
It is a definition of a register (input or output) or binary (input or output) which usually represents an
input or output on a Slave station. Each data point is directly assigned a (matrix) variable or bit into
which read values are to be written or from which values for writing into the Slave station shall be
taken.

Modules DMM-xxx
These modules allow us to extend the number of inputs and outputs in devices programmed as
MODBUS Master by using the MODBUS RTU protocol. We can connect up to 63 modules into
a single MODBUS network.

On-wall controllers AMR-OPxx
On-wall controllers may listen on RS485 interface as MODBUS RTU Slave stations either thanks
to an application loaded into them within production, or to a loaded specific sample application or
even using a user-created application which uses the communication object ModbusSlave or

SerialBusN.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 7/45 ap0008_en_06

2 MODBUS protocol
MODBUS is an open communication protocol developed by the Modicon company. Originally, the
protocol was designed for an RS232 bus; however, it soon transitioned to RS485 because of its
better reliability and options of connecting multiple devices at longer distances. The protocol is
flexible but at the same time easy to implement, and therefore soon various producers started
implementing it into their devices. At present, communication via MODBUS protocol is supported
not only in microcontrollers or industrial PCs, but also by a variety of intelligent sensors, action
elements and other simple controls.

On the other hand, the protocol precisely defines e.g. time conditions in the network and error
responses. If the counterpart fails to respect these regulations, communication with such devices
will not work.

Certain implementations of the MODBUS protocol even support Multimastering; however, it is not
supported in AMiT systems. AMiT supports communication via MODBUS protocol in extension
modules and communication converters of the series DMM-xxx (MODBUS RTU) and in all of its
control systems, control terminals and programmable controllers as well as in controllers with
interfaces RS232 or RS485 (MODBUS RTU, in case of PseDet control systems also MODBUS
ASCII). The master/slave determination depends on a specific implementation.

Note
Communication interface of the control system where MODBUS network is connected cannot be
used to connect a device with another communication protocol.

Caution!
Various producers may have various interpretations of data point addressing, despite MODBUS
protocol specification. Find out more in the Help section of DetStudio called “PseDet – Creating
control processes”, in chapter “Contents/Communication/Modbus” in the section “Addressing
Registers/Binaries”.

2.1 Supported MODBUS functions

PseDet control systems made by AMiT support the following functions of the MODBUS protocol.
Functions stem from the MODBUS protocol definition and define the type of the frame used.

Function No. Description

1 Reading status of binary outputs (coils).

2 Reading binary inputs.

3 Reading output (holding) registers.

4 Reading input (holding) registers.

5 Setting one binary output (coil).

6 Setting one output (holding) register.

15 Setting binary outputs (coils).

16 Setting output (holding) registers.

The stated description is only general and for orientation. Specific descriptions of individual
functions depend on specific type of device.

For analogue values, we frequently use pairs of registers, so writing analogue outputs is performed
using function No. 16. Find out more in the Help section of DetStudio called “PseDet – Creating
control processes”, in chapter “Contents/Communication/Modbus” in the section “Communication
Points Mapping”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 8/45

3 Connecting the communication network
In order for the entire MODBUS network to work properly, it is necessary to design, connect and
configure individual network modules and to programme communication in control systems.

Communication via MODBUS protocol usually uses RS485 network. We can connect another
device to the control system (e.g. modules DMM-xxx made by AMiT) directly to the RS485
interface or to RS232 interface by means of a converter (e.g. DM-232TO485).

When wiring the network on a serial interface RS485, it is necessary to follow the
recommendations stated in Application note AP0016 – Principles of RS485 interface usage.

An AMiT control system may behave as Master or Slave in a MODBUS network. In a Master role,
usually in combination with DMM-xxx modules, on-wall controllers AMR-OPxx and third-party
technological devices (e.g. action elements), or in a Slave role as a part of more complex
networks.

Extension modules and communication converters with MODBUS protocol designated DMM-xxx
are always in the Slave role in the network.

Fig. 1 – Communication via MODBUS protocol directly in the RS485 network

Legend

Number Description

1 AMiT control system

2 Extension input/output modules made by AMiT

3 Third-party devices as Slave stations

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 9/45 ap0008_en_06

Fig. 2 – Communication via MODBUS protocol using a converter from RS232 or RS485

Legend

Number Description

1 AMiT control system

2 Extension input/output modules made by AMiT

3 Third-party devices as Slave stations

Note
Converter DM-232TO485 connected to RS232 of an AMiT control system is set as controlled by
RTS signal.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 10/45

4 Time conditions in the network
Communication is executed within certain periods. At the beginning of such period, master
activates the interface (based on the definition table, a package of requests is created), and
subsequently requests for each remote point stated in the definition table are communicated. The
interface activity finishes when the last frame is communicated.

4.1 Communication period

Master gradually sends out requests to individual data points in the network and receives their
responses. Communication periods of data points are determined by the communication function
used and by the amount of data transmitted. Generally, we are able to calculate the
communication period length using the following table.

Transmission
speed [bps]

Minimum
comm. period [ms]

Data point communication period
[ms]

 9,600 40 3 × register, 1.5 × each set of eight binaries started

19,200 20 1.5 × register, 0.8 × each set of eight binaries started

38,400 15 1 × register, 0.5 × each set of eight binaries started

57,600 10 0.7 × register, 0.4 × each set of eight binaries started

Stated values serve for setting a minimum communication period of one communication row in the
table in case the basic time conditions specified by the MODBUS protocol are followed. If the
counterpart takes longer to process the communication request, the entire communication gets
delayed.

Example

We need to communicate with 10 DMM-xxx modules periodically. In five, we require
communication of 8 registers and in five, we require communication of 18 binaries. Therefore, we
define on row of remote point communication for each module (one group of register or binaries).
The required communication speed is 19,200 bps. Based on the previous table, we determine the
following communication periods:

Treg = 20 + 1.5 × 8 = 32 ms

Tbin = 20 + 0.8 × 3 = 22.4 ms

In case of calculating Tbin, we start from the fact that 18 binaries are divided into 8 + 8 + 2,
therefore the value considered is 3.

The total minimum communication period is therefore:

Ttot = 32 × 5 + 22.4 × 5 = 272 ms

Amendment
If we communicated only a single Slave station with a layout 5 × 8 registers and 5 × 18 binaries on
ten rows of the definition table, the resulting period would be entirely identical.

4.1.1 Communication priorities

Automatic Read priority

DetStudio offers three reading priorities for automatic reading of values from Slave stations:

Read priority Communication period [ms]

Low 5,000

Normal 1,000

High 200

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 11/45 ap0008_en_06

By defining the priority, the programmer selects with what period the given row of the table is to be
communicated. Obviously, it is not possible to use communication with priority High in definition

rows of the table in the previous example because the interface would become completely
overloaded with communication requests.

It applies that the NOS operating system goes through individual definition tables every 200 ms
and if it discovers a row with automatic Read priority and is to communicate this row in the given
200 ms cycle, this row is placed in a communication request queue.

Caution!
Communication requests are processed gradually until the communication request queue has
been processed entirely. That means that if at one moment two rows with High priority and other

20 rows with Low priority are marked and this entire communication takes for example 600 ms, the

aforementioned two rows with High priority shall be communicated repeatedly only after

communication of all marked rows has finished. Consequently, the selected priority High is not

followed.
If communication period 200 ms must be kept for all rows with High priority under any

circumstances, all other communications must be launched manually and in such amounts so that
the communication period of the given amount of communication requests and rows with High

does not exceed 200 ms.

Automatic Write priority

In case of automatic writing, there is no defined priority with a time period; the only available option
is switching to priority Auto.

If this priority is selected, the assigned variable (even with the same value) is marked upon each
writing and placed at the start of the communication request queue. Writing requests are therefore
always communicated before reading requests.

Due to internal mechanisms for detection of writing into the assigned variable, the given variable
may be used in the definition table with priority Auto only once. For example, if we require that

values from multiple cells of a matrix variable serve for writing of various registers, or that values of
integer variable bits serve for writing of various binaries, we can proceed on the basis of registers
layout:

◆ If two writing registers or binaries are in a sequence one after another, define only one

definition row and have a set value of the column Number to the corresponding value. An

example of such a definition is available in the Help section of DetStudio called “PseDet –

Creating control processes”, in chapter “Contents/Communication/Modbus – Device table

editor” in the section “Notes”.

◆ If writing registers or binaries are not in a sequence, it is necessary to set communication

priorities for the given definition rows manually. In order to detect a binary value change, we

can use the module BinDiff.

Manual communication priority

If automatic communication priority of definition rows does not permit a correct requested mode of
communication with the Slave station, it is necessary to use manual communication priority. We
set it by selecting the option –-manual-- in the requested communication priority column.

The following modules are used to launch manual communication:

◆ MdbmMark – marking a rather large number of definition rows for communication,

◆ MdbmRead – marking a specific definition row for reading,

◆ MdbmWrite – marking a specific definition row for writing,

◆ MdbmWrBeg, MdbmWrFin – marking a specific definition row for a so called safe writing.

These modules work with labels on a specific Device definition as well as with labels for a specific
definition row, except for the module MdbmMark. More information on individual modules is

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 12/45

available in the Help section of DetStudio called “PseDet – Creating control processes”, in
descriptions of individual modules.

Unlike in case of automatic communication priority, data points in manual communication are
communicated immediately after execution of the given module. This way, we are able to achieve
communication even faster than 200 ms.

4.1.2 Gathering communication frames

When calculating a minimum communication period, it is also necessary to consider automatic
gathering of communication frames going in a sequence when using communication functions 1, 2,
3, 4, 15 and 16 (see chapter 2.1 “Supported MODBUS functions”).

Example

Let us have a definition table with two rows for loading two registers into two variables. If
addresses of the given registers are not in a sequence, e.g. addresses 0 and 2, communication is
executed in two frames. At speed 19,200 bps, the period is:

T = 2 × (20 + 1.5 × 1) = 43 ms

However, if register addresses are defined in a sequence, e.g. addresses 0 and 1, communication
is executed in a single frame. At speed 19,200 bps, the period is:

T = 20 + 1.5 × 2 = 23 ms

If we go back to “Amendment” of the original example at the beginning of this chapter (Example),
then in case all 5 × 8 registers and 5 × 18 binaries were defined in an uninterrupted sequence, e.g.
i registers with addresses 0 to 7, 8 to 15, 16 to 23, 24 to 31 and 32 to 39, then registers and
binaries would be communicated each in a single frame. At speed 19,200 bps, the period is:

T = (20 + 1.5 × 40) + (20 + 0.8 × 15) = 112 ms

If we need to communicate as fast as possible, we could use automatic Read priority High in this

case.

4.2 Communication in the event of a connection failure

If communication with the Slave station is not available, or more specifically if there has been no
response to the request, the following algorithm of communication with this station is launched:

1. The frame that received no response is repeated 2× more.

2. If there is still no response, subsequent communication requests are ignored for the period of
15 seconds. This is signalled by setting bit No. 4 of the parameter “Status” of the module
MdbmReqSt (for description, see chapter 5.5 “Communication statuses”) to True.

3. After this period, the table of communication requests of the given Slave station is checked. If
any request is found, attempt for this communication is made. The first items to be checked
are writing requests. At the same time, bit No. 4 of the parameter “Status” of the module
MdbmReqSt is set to False for the period of this communication.

4. If there is still no correct response, the current time of ignoring communication requests is
prolonged by 2 seconds. The bit No. 4 of the parameter “Status” of the module MdbmReqSt is

set to True again.

5. If it was a writing communication request, this request maintains its flag for communication
after the delay time has elapsed. If it was a reading request, the flag for communication is
cancelled.

6. After a new delay time elapses, the algorithm repeats from the point 3. Maximum time of
ignoring communication requests is 30 s. That gives us a row of times 15 s, 17 s, 19 s, …,
29 s, 30 s, 30 s, ….

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 13/45 ap0008_en_06

4.3 Connection failure detection in modules DMM-xxx

All output modules of the series DMM-xxx have a simple mechanism implemented to turn off
outputs in the event of a physical disruption of the network. If the module receives no valid frame in
the network in 10 seconds (for any module), it sets a secure state on all outputs. This behaviour is
firmly fixed in DMM-xxx modules and cannot be changed.

Secure states for various output types

Output type Secure state

Digital outputs 0 V

Relay outputs Open

Analogue outputs 0 V / 0 mA

In case the communication is disrupted and outputs are set to secure states, the outputs will be
re-set to the required values once the communication is renewed. However, this only happens in
a period equal to the period of communication with modules.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 14/45

5 Control system as Master
We define communication using MODBUS protocol in the Master role in a set of three definitions:

◆ creating a communication definition of the protocol in the Master role,

◆ creating a definition of the Slave station,

◆ defining data points of the given Slave station for communication.

5.1 Communication definition

Creating a communication definition of MODBUS protocol in the Master role represents inserting
a definition of the communication item ModbusMaster into the project. We do so in DetStudio in

the Project window in the node “Project/Communication/Modbus”. When calling the context menu
for this item, we select the item Add Master.

Fig. 3 – Item “Add Master” in the definition of “Modbus” communication

After we insert this definition, a communication node ModbusMaster0 is created with the following

values of properties:

◆ BaudRate: 19,200

◆ Mode: SerialLineRTU

◆ Parity: Even

◆ SerialPort: 0

◆ StopBit: One

◆ ToReceive: 30

◆ ToTransmit: 4

It applies that for communication via RS232 interface it is necessary to set the value of the property
SerialPort to 0; whereas in case of RS485 interface it is necessary to set this property value to 1.

More information is available in the Help section of DetStudio called “PseDet – Creating control
processes”, in chapter “Contents/Communication/Modbus/Master – creating and setting general
parameters”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 15/45 ap0008_en_06

5.2 Definition of a Slave station and data points for
communication

In order to communicate with individual Slave stations, we must define addresses in MODBUS
network and a list of communication points.

Individual Slave stations called Device define specific ModbusMasterX definitions in the Project
window directly in the node “Project /Communication/ Modbus”. After calling the context menu for
this item, we select the item Add Device.

Fig. 4 – Item “Add Device” in the definition of the node “ModbusMasterx”

After we insert this definition, a communication node ModbusDevice0 is created with default values

of properties:

◆ Address: 1

◆ ByteOrder: 0-1-2-3 (Modbus default)

◆ ClientLabel: -1

Since 32-bit types (Long and Float) are not defined in the MODBUS protocol in any way, the
manner of these extension register implementation (if any) is only up to the given device’s
manufacturer. Due to the fact that the sequence of bytes in 16-bit words is defined as Big-Endian,
in AMiT products this manner of coding has been also applied to the aforementioned 32-bit types.

If communication of 32-bit values results in values in variables significantly different than actual
values in the Slave station, it is recommended we change the value of the property ByteOrder,

usually to 2-3-0-1.

Value of the property ClientLabel is used in case of manual communication with the Slave

station and when determining communication statuses (see chapters 5.4 “Manual communication”
and 5.5 “Communication statuses”).

After we define the node ModbusDeviceX, we are able to double-click it in the Project window and

call up the definition table of communication data points of this Slave station.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 16/45

In the following three chapters, we shall presume communication with DMM-UI8DO8 in which there
is a request for reading analogue input values and writing of digital outputs. The operation manual
for this module states that analogue values are read using function 4 – reading input registers;
writing into digital outputs is done through function 5 – setting one binary output (coil) or 15 –
setting binary outputs (coils). Therefore, the definition table of the node ModbusDeviceX includes

tabs “Input registers” and “Coils”.

We can define individual data points e.g. By dragging them from the Toolbox window. More
information on definition of data points is available in the Help section of DetStudio called “PseDet
– Creating control processes”, in chapter “Contents/Communication/Modbus - Device table editor”.

Fig. 5 – Basic definition of data points and assigned variables

5.3 Automatic communication

After we define data points, items --manual-- are pre-set in the definition table columns “Read

priority” and “Write priority”. For automatic communication, it is necessary to change their settings
to one of the automatic priorities stated in chapter 4.1.1 “Communication priorities”.

Fig. 6 – Definition of data points for automatic communication

Recommendation
If we wish to prevent writing event when the identical value is written into the variable, we can
recommend the following code that only executes writing into a communication variable at the
moment when the value of the auxiliary working variable changes:

If DMM1_DO != DMM1_DO_pr

 Let DMM1_DO_pr = DMM1_DO

EndIf

In application, this auxiliary working variable is to be used in the application code, whereas the
communication variable will only be used in the definition table.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 17/45 ap0008_en_06

Note
Due to internal algorithms for the use of automatic Write priority, it is not suitable to have both
automatic Read priority and automatic Write priority on a single row. More information is available
in the Help section of DetStudio called “PseDet – Creating control processes”, in chapter
“Contents/Communication/Modbus - Device table editor” in the section “Notes”.

5.4 Manual communication

For manual communication, it is necessary to define labels. There are two types of labels:

◆ Slave station definition label – property ClientLabel,

◆ definition row label – column “Label”.

Value label values must not be negative. The label ClientLabel must be unique within the

project, the label in the data points definition table must be unique within the given table.

Fig. 7 – Label ClientLabel definition

Fig. 8 – Data points label definition

As soon as the labels are defined, we are able to use modules Mdbm*** mentioned in chapter

4.1.1 “Communication priorities”, section “Manual communication priority”.

We can use the following definition to mark the row with label 1 for reading of analogue inputs:

MdbmRead 10, 1, DMM1_AI_rslt

 │ │ └ Module execution result

 │ └ Definition row label

 └ ClientLabel

or:

MdbmMark 1, 4, 0, 8, DMM1_AI_rslt

 │ │ │ │ └ Module execution result

 │ │ │ └ Number of addresses for labelling

 │ │ └ Starting address for labelling

 │ └ Communication function definition

 └ ClientLabel

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 18/45

Using the module MdbmMark obviously does not require a definition for labels for specific rows.

This module therefore allows us to batch-label a large number of definition rows of a single group
of data points.

We can use the following definition to mark the row with label 2 for writing of digital outputs:

MdbmWrite 10, 2, DMM1_DO_rslt

 │ │ └ Module execution result

 │ └ Definition row label

 └ ClientLabel

or:

MdbmMark 1, 5, 0, 8, DMM1_DO_rslt

In this example, it is not necessary to consider the necessity to use a so called safe writing by
means of modules MdbmWrBeg and MdbmWrFin, because the given definition row serves only for

writing.

Note
We can have both automatic and manual communication defined in a single definition row in the
table. These two communications are not mutually exclusive.

5.5 Communication statuses

We use the following modules to detect communication statuses:

◆ MdbmCliSt – detecting the communication status via specified communication interface

◆ MdbmReqSt – detecting the communication of a specific communication request

Module MdbmReqSt can be used for detection of failed communication with the Slave station using

bit No. 4 (see the text under tables). In order to be able to detect a communication failure, we use
the label of the most frequently communicated definition row of the table.

MdbmCliSt 10, DMM1_ClSt, DMM1_CS_rslt

 │ │ └ Module execution result

 │ └ Status of the client, or more spec. of the communication interface

 └ ClientLabel

MdbmReqSt 10, 1, DMM1_RqSt, DMM1_RS_rslt

 │ │ │ └ Module execution result

 │ │ └ Communication request status

 │ └ Definition row status

 └ ClientLabel

Using the module MdbmReqSt is definitely recommended for communication debugging, when we

can acquire information about potential communication errors based on the value of the
communication request status parameter.

This parameter’s value gets various bit-coded values depending on the current status of the data
point communication request entry and on the current communication status according to the
following table.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 19/45 ap0008_en_06

Bit Description

0 Has value 1 if communication is currently in progress.

1 Has value 1 if the previous finished communication has finished successfully.

2 Has value 1 if the previous finished communication has finished in an error.

4 Has value 1 if the next attempt for communication is ignored.

6 Has value 1 if the request is marked for reading and awaits communication.

7 Has value 1 if the request is marked for writing and awaits communication.

8 Has value 1 if the request has been blocked by the module MdbmWrBeg.

9 Has value 1 if the request is repeatedly automatically marked for writing and awaits
communication.

10 Has value 1 if the currently communicated request is for writing.

11 Has value 1 if the previous finished communication was for writing.

12 to 15 If the communication ended up in an error (bit 2 has value 1), these bits contain the
communication error codes according to the following table. Otherwise, values of
these bits are not defined.

Error codes in bits 12 to 15

Error code Description

0 Station responded negatively, with an unspecified error.

1 Station response: “Incorrect function”.

2 Station response: “Incorrect register/binary address”.

3 Station response: “Incorrect data value.”

4 Unknown unspecified error.

5 Station has not responded within the required period.

6 Transmission error (incorrect CRC, incorrect response length, etc.).

7 Connection error, usually in case of MODBUS TCP communication.

With respect to the fact that bit No. 4 only signalizes ignoring of a subsequent communication, we
can recommend using the module RS to signalize a failure in communication with the given Slave

station:

RS DMM1_RS_rslt.4, DMM1_RS_rslt.1, DMM1_Problem.0

5.6 Example of a control system parametrization as Master

Let us have an application in which one control system AMiNi4W2 is to serve as a Slave station for
the second control system AMiNi4W2. Slave station’s register layout is described in chapter 6.4
“Example of a control system parametrization as Slave”.

We also know the holding registers’ layout:

◆ address 0 – DI,

◆ addresses 1 to 8 – AI_Integer,

◆ addresses 10 to 25 – AI_Float,

◆ address 100 – DO,

◆ addresses 101 to 104 – AO.

First, variables are created to be assigned to the given definition rows:

◆ AMiNi_DI – type I,

◆ AMiNi_AI – type MI, dimension [1×8],

◆ AMiNi_AI_F – type MF, dimension [1×8],

◆ AMiNi_DO – type I,

◆ AMiNi_AO – type MI, dimension [1×4].

The next step is to create a definition node ModbusMaster0 and within it create a definition

ModbusDevice0.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 20/45

In the definition of the table ModbusDevice0, there are 5 rows defined in the tab “Holding

registers”. We select priorities in definition rows for example as follows:

◆ address 0 – automatic reading with priority Normal,

◆ addresses 1 to 8 – automatic reading with priority Low,

◆ addresses 10 to 25 – automatic reading with priority Low,

◆ address 100 – manual writing,

◆ addresses 101 to 104 – automatic writing.

Because manual writing is defined and the request for detection of connection status with the
Slave station, the definition of ModbusDevice0 includes a parameter ClientLabel, e.g. to value

10. In order to detect the connection status to the Slave station, a label is defined in the row of the
register with address 0 and for manual execution of communication another label is defined in the
row of the register with address 100.

Due to the fact that AMiT product support communication frames 6 as well as 16, the column
“Writing function” maintains the option normal Modbus.

The resulting table’s appearance is illustrated in the following image.

Fig. 9 – Basic definition of data points and assigned variables

The last step is defining modules MdbmReqSt and MdbmWrite. In order to prevent excessive

communications of register 100, we use the algorithm described in chapter 5.4 “Manual
communication”.

The resulting code in the periodic process is written as follows:

MdbmReqSt 10, 1, AMiNi_RqSt, AMiNi_RS_rs

If not AMiNi_RqSt.4

 If AMiNi_DO != AMiNi_DO_pr

 Let AMiNi_DO_pr = AMiNi_DO

 MdbmWrite 10, 2, AMiNi_DO_rs

 EndIf

EndIf

Note
The application code should subsequently deal with conversion of values of analogue quantities,
which is not considered in this example.

The stated algorithm is included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p1_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 21/45 ap0008_en_06

6 Control system as Slave
We define communication using MODBUS protocol in the Slave role in two definitions:

◆ creating a communication definition of the protocol in the Slave role,

◆ definition of data points for communication.

6.1 Communication definition

Creating a communication definition of MODBUS protocol in the Slave role represents inserting
a definition of the communication item ModbusSlave into the project. We do so in DetStudio in the

Project window in the node “Project/Communication/Modbus”. After calling the context menu for
this item, we select the item Add Slave.

Fig. 10 – Item “Add Slave” in “Modbus” communication definition

After we insert this definition, a communication node Modbus0 is created with default values of

properties:

◆ Address: 1

◆ BaudRate: 19,200

◆ DataBits: 8

◆ LastError: NONE

◆ Mode: SerialLineRTU

◆ Parity: Even

◆ SerialPort: 0

◆ StopBit: One

It applies that for communication via RS232 interface it is necessary to set the value of the property
SerialPort to 0; whereas in case of RS485 interface it is necessary to set this property value to 1.

More information is available in the Help section of DetStudio called “PseDet – Creating control
processes”, in chapter “Contents/Communication/Modbus/Slave - creating and setting general
parameters”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 22/45

6.2 Definition of data points for communication

After we define the node ModbusX, we are able to double-click it in the Project window and call up

the definition table of communication data points.

In this table, control system variables are defined in individual tabs of data point groups (Holding
registers, Input registers, Coils and Discrete inputs); these variables are to be available under
selected addresses.

We can define individual data points e.g. By dragging them from the Toolbox window. More
information on definition of data points is available in the Help section of DetStudio called “PseDet
– Creating control processes”, in chapter “Contents/Communication/Modbus/Slave - table editor”.

6.3 Communication statuses

Communication status on part of the Master is available after we assign a variable to the property
LastError in definition of the ModbusX communication. The expected variable type is I.

We recommend using this property especially in communication debugging when its value is able
to provide us with information on potential communication error. The assign variable is to take
values according to the following table:

Error code Description

0 No error.

1 NOS version too low. Requires version at least 3.25 or higher.

2 System timer allocation error.

3 Communication port allocation error.

4 Last frame received had an incorrect check sum.

5 Last frame received had an incorrect length.

6 Last frame received included a request for an unmapped address.

7 Last frame received included a request for an unsupported function.

8 Last frame received required more data than is available for a response frame.

9 Last frame received included incorrect data (function 6 ON, OFF).

10 Too wide space between incoming characters.

11 Error in ASCII reception:
– frame too long,
– unexpected character (only textual hexa digits must be inside the frame),
– no LF followed after CR.

12 The module has not been launched yet (no parameter evaluation and
communication port allocation).

6.4 Example of a control system parametrization as Slave

Let us assume we have a request for creation of an application that makes the control system
AMiNi4W2 work as a module of remote inputs and outputs communicating via MODBUS RTU
protocol. At the same time, the application is to be universal enough to be able to communicate
analogue values in a decimal or integer form.

1. Variables are created, according to the following table.

Variable Type Comment

DI I Digital inputs.

AI_I MI[1,8] Integer values of analogue inputs.

AI_F MF[1,8] Float values of analogue inputs.

DO I Digital outputs.

AO_I MI[1,4] Integer values of analogue outputs.

AO_F MF[1,4] Float values of analogue outputs.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 23/45 ap0008_en_06

Variable Type Comment

tempF F Auxiliary Float variable.

Mdbs_Err I Code of the previous communication error.

2. Addresses and data point types are selected that are to represent the given variables according
to the following table.

Variable Address Data point type

DI 0 Holding register

AI_I 1 to 8 Holding register

AI_F 10 to 25 Holding register

DO 100 Holding register

AO_I 101 to 104 Holding register

AO_F 110 to 117 Holding register

3. Based on the previous table, definition rows are defined in the node Modbus0.

Fig. 11 – Definition of MODBUS Slave data points and assigned variables

4. Creating an algorithm in a periodic process that is to load inputs and write outputs based on
variable values. The code may look as follows:

// ------------------------------------ DI ------------------------------------

DigIn #0, DI, 0x0000

// ------------------------------------ AI ------------------------------------

// AI0 and AI1 as Ni1000 / 6,180 ppm

// Temperature 12.45 °C corresponds to value 1245 in Int register

Ni1000 #Ni10001_0, AI_F[0,0], 6180

Let AI_I[0,0] = Int(AI_F[0,0] * 100)

Ni1000 #Ni10001_1, AI_F[0,1], 6180

Let AI_I[0,1] = Int(AI_F[0,1] * 100)

// AI2 and AI3 as Pt1000 / 3,850 ppm

// Temperature 12.45 °C corresponds to value 1245 in Int register

Pt1000 #Ni10001_2, AI_F[0,2], 3850

Let AI_I[0,2] = Int(AI_F[0,2] * 100)

Pt1000 #Ni10001_3, AI_F[0,3], 3850

Let AI_I[0,3] = Int(AI_F[0,3] * 100)

// AI4 and AI5 for measurement of voltage 0 to 10 V

// Value 3.678 V corresponds to value 3678 in Int register

AnIn #AI00_4, AI_F[0,4], 10.000, 0.000, 10.000, 0.000, 10.000

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 24/45

Let AI_I[0,4] = Int(AI_F[0,4] * 1000)

AnIn #AI00_5, AI_F[0,5], 10.000, 0.000, 10.000, 0.000, 10.000

Let AI_I[0,5] = Int(AI_F[0,5] * 1000)

// AI6 and AI7 for measurement of current 0(4) to 20 mA

// Value 15.345 mA corresponds to value 15345 in Int register

AnIn #AI00_6, AI_F[0,6], 20.000, 0.000, 20.000, 0.000, 20.000

Let AI_I[0,6] = Int(AI_F[0,6] * 1000)

AnIn #AI00_7, AI_F[0,7], 20.000, 0.000, 20.000, 0.000, 20.000

Let AI_I[0,7] = Int(AI_F[0,7] * 1000)

// ------------------------------------ DO ------------------------------------

DigOut DO, #0, 0x0000

// ------------------------------------ AO ------------------------------------

// AO0 to AO3 with output 0 to 10 V

// Setpoint value 2.456 V must be written in Int register as value 2456

// We either use Float registers 110-111 to 116-117 or Int registers 101 to 104

Let tempF = If(AO_F[0,0] == 0, AO_I[0,0] / 1000, AO_F[0,0])

AnOut #AO00_0, tempF, 10.000, 0.000, 10.000, 0.000, 10.000

Let tempF = If(AO_F[0,1] == 0, AO_I[0,1] / 1000, AO_F[0,1])

AnOut #AO00_1, tempF, 10.000, 0.000, 10.000, 0.000, 10.000

Let tempF = If(AO_F[0,2] == 0, AO_I[0,2] / 1000, AO_F[0,2])

AnOut #AO00_2, tempF, 10.000, 0.000, 10.000, 0.000, 10.000

Let tempF = If(AO_F[0,3] == 0, AO_I[0,3] / 1000, AO_F[0,3])

AnOut #AO00_3, tempF, 10.000, 0.000, 10.000, 0.000, 10.000

The stated algorithm is included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p2_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 25/45 ap0008_en_06

7 Appendix A

7.1 Compatibility with communication initialization via modules

7.1.1 MODBUS Master

We can also initialize MODBUS Master RTU communication by means of modules RmtDef,

RmtAct and MODBS_R that are typically placed into the initialization and periodic process.

However, in terms of internal functionality, it is a different communication than a table definition.
For this reason, it is not possible to combine both communication definitions on the same COM
interface.

If each communication initialization is defined on a different COM interface, both communications
are fully functional.

7.1.2 MODBUS Slave

We can also initialize MODBUS Master RTU communication by means of modules MODBS_Var

and MODBS_RSl that are typically placed into the initialization process.

However, in terms of internal functionality, it is an identical communication to a table definition. For
this reason, it is possible to combine both communication definitions on the same COM interface.

Find out more in the Help section of DetStudio called “PseDet – Creating control processes”, in
chapter “Contents/Communication/Modbus” in the section “Backward compatibility”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 26/45

8 Appendix B

8.1 Programme operation DMM-xxx

Data point addresses in individual modules are always determined by the number of the given
input/output of the module DMM-xxx.

8.1.1 DMM-DI24

The module DMM-DI24 provides two modes of operation (mutually independent).

◆ Working with classic digital inputs (values True / False) – option to read one or multiple inputs.

◆ Working with counter inputs (counting impulses up to frequency 25 Hz) – option to read and

write one or multiple counters.

The definition table of full communication with the module may look like in the following image.

Fig. 12 – Example of communication definition with DMM-DI24

According to the given definition, input statuses are saved into bits 0 to 23 of the variable
M_DI24_DI type Long every 1,000 ms. Counter values are saved into cells of the variable

M_DI24_cnt type Matrix Int (e.g. dimension [1×24]) every 5 ,000 ms.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for reading input statuses. In our example, we set the property
ClientLabel to value 10.

MdbmReqSt 10, 1, M_DI24_Stat, NONE

Working with classic digital inputs

We can use the communication variable M_DI24_DI directly in the application algorithm; the

variable works with Discrete inputs at addresses 0 to 23.

Working with counter inputs

The module DMM-DI24 allows us to use function of counting previous impulses on any of its
inputs. This partially solves problems with short impulse detection. Counter values are available in
Holding Registers at addresses 0 to 23.

However, we need to take into account certain limitations when using this function:

◆ Maximum counted value possible is 32 767 (number 15 bit). After another pulse is added, the

counting starts again from zero. It is necessary to handle the internal counter overflow in terms

of programming.

◆ Maximum frequency of incoming impulses is 25 Hz. With a higher frequency, there is no

guarantee that all incoming impulses are recorded.

◆ The module’s internal counter is reset when the power-supply voltage is disconnected; we can

also reset it in the programme.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 27/45 ap0008_en_06

Based on the table definition, periodic loading of counter values is handled. If it is desirable to reset
counter values manually during the counting, we can use the following algorithm using modules for
safe writing.

If @DI24_cntRst and not M_DI24_Stat.4

 Let @DI24_cntRst = false

 MdbmWrBeg 10, 2, NONE

 For i, 0.000, 23.000, 1.000

 Let M_DI24_cnt[0,i] = 0

 EndFor

 MdbmWrFin 10, 2, NONE

EndIf

In this case, modules for safe writing are entirely necessary, since it is not possible to simply
determine the exact moment of when values are loaded from the Slave station. If this moment
occurs between the execution of the row with the module EndFor and the execution of the

subsequent module MdbmWrite, only those identical values that have just been loaded would be

written into the module.

Caution
It is necessary to pay attention to counter overflow! Counter range is 0 to 32 767. Therefore, a
counter generates a row 0, 1, 2, …, 32 766, 32 767, 0, 1, 2, …. Therefore, it will be necessary to
count the number of overflows “p” of the counter, and the resulting sum of pulses will therefore be
equal to: sum = p*32 768 + counter.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p3_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

8.1.2 DMM-DO18

The module DMM-DO18 has two operation modes.

◆ Working with classic digital inputs (values True / False) – option to read and write one or

multiple outputs.

◆ Working with outputs in PWM mode – option to read and write one or multiple PWM output

parameters.

The definition table of full communication with the module may look like in the following image.

Fig. 13 – Example of communication definition with DMM-DO18

According to the given definition, output statuses change according to bits 0 to 17 of the variable
M_DO18_DO type Long after every entry written into this variable. PWM output parameters will

change according to cells of the variable M_DO18_PWM type Matrix Int (e.g. dimension [1×19]) after

every entry written into this variable.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 28/45

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for writing outputs. In our example, we set the property ClientLabel

to value 20.

MdbmReqSt 20, 1, M_DO18_St_D, NONE

or

MdbmReqSt 20, 2, M_DO18_St_P, NONE

depending on which communication occurs more frequently.

Working with classic digital outputs

We can use the communication variable M_DO18_DO directly in the application algorithm; the

variable works with Coils at addresses 0 to 17.

In order to prevent unnecessary excess communications of identical values, it is recommended to
use the code stated in chapter 5.3 “Automatic communication”, section “Recommendation”.

Working with outputs in PWM mode

In the PWM mode, we are able to change duty cycle in individual outputs of the module
DMM-DO18. Duty cycle is available in Holding Registers at addresses 0 to 17. PWM period is
entered at address 18 and it is common for all digital outputs.

The values are interpreted in a way that 0 to 32767 corresponds to 0 % to 100 % range of the duty
cycle. PWM period value is interpreted in a way that 0 to 32 767 corresponds to 0 s to 100 s.

In order to convert values, we can use the following algorithm and modules VarWStat and

Interpol.

VarWStat DO18_P_per, @DO18_P_p_w, 0

If @DO18_P_p_w

 Interpol DO18_P_per, tmpF2, Params100_32

 Let M_DO18_PWM[0,18] = Int(tmpF2)

EndIf

Note
The real output on the DO module DMM-DO18 is a logical sum of the value of DO and PWM.

Retroactive reading of outputs and PWM parameters

While writing parameters is automatic after a value is written into a defined variable thanks to the
priority Auto, reading has a defined priority –-manual--. That means that we need to use modules

MdbmRead or MdbmMark for non-periodic value loading.

Caution
If the module DMM-DO18 does not detect any frame (with any address) on the bus for a period of
10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max. 5
s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p4_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 29/45 ap0008_en_06

8.1.3 DMM-RDO12

The module DMM-RDO12 can be operated in the mode of working with classic digital inputs
(values True / False) – option to read and write one or multiple outputs.

The definition table of full communication with the module may look like in the following image.

Fig. 14 – Example of communication definition with DMM-RDO12

According to the given definition, output statuses change according to bits 0 to 11 of the variable
M_RDO12_DO type Int after every entry written into this variable.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for output status. In our example, we set the property ClientLabel to

value 30.

MdbmReqSt 30, 1, M_RDO12_Stat, NONE

Working with digital outputs

We can use the communication variable M_RDO12_DO directly in the application algorithm; the

variable works with Coils at addresses 0 to 11.

In order to prevent unnecessary excess communications of identical values, it is recommended to
use the code stated in chapter 5.3 “Automatic communication”, section “Recommendation”.

Caution
If the module DMM-RDO12 does not detect any frame (with any address) on the bus for a period of
10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max.
5 s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Retroactive reading of outputs

While writing parameters is automatic after a value is written into a defined variable thanks to the
priority Auto, reading has a defined priority –-manual--. That means that we need to use modules

MdbmRead or MdbmMark for non-periodic value loading.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p5_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

8.1.4 DMM-AI12

The module DMM-AI12 allows us to read one or multiple inputs.

The definition table of full communication with the module may look like in the following image.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 30/45

Fig. 15 – Example of communication definition with DMM-AI12

Loaded input values are saved into cells 0 to 11 of the variable M_AI12_AI type Matrix Int (e.g.

dimension [1×12]) every 1 ,000 ms.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for reading input values. In our example, we set the property
ClientLabel to value 40.

MdbmReqSt 40, 1, M_AI12_Stat, NONE

Working with analogue inputs

The values of inputs in Input registers at addresses 0 to 11 are interpreted in a way that 0 to 32767
corresponds to 0 % to 100 % range of the input range.

In order to convert the values to the range 0 V to 5 V, we use e.g. the following algorithm using the
module Interpol.

Let AI12_f[0,0] = M_AI12_AI[0,0]

Interpol AI12_f[0,0], AI12_AI[0,0], Range0_5V

Stated algorithms (including the sample of conversion of a measured value to 0 V to 10 V, 0 mA to
20 mA and conversion to temperature measured using sensors Ni1000 and Pt1000) are included
in the annex ap0008_en_xx.zip. It is a project called mpbus_p6_en_xx.dso created in DetStudio
development environment. This project has been created for the control system AMiNi4DW2.
However, it can be modified to suit any control system fitted with a serial communication interface
using the DetStudio menu “Tools/Change Station”.

8.1.5 DMM-AO8x

The module DMM-AO8x allows us to read and write one or multiple outputs and parameters of
LED behaviour.

The definition table of full communication with the module may look like in the following image.

Fig. 16 – Example of communication definition with DMM-AO8x

According to the given definition, output values change according to cells 0 to 7 of the variable
M_AO8_AO type Matrix Int (e.g. dimension [1×8]) after every entry written into this variable. LED

behaviour parameters will change according to cells of the variable M_AO8_Leds type Matrix Int

(e.g. dimension [1×2]) after every entry written into this variable.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for output values. In our example, we set the property ClientLabel

to value 50.

MdbmReqSt 50, 1, M_AO8_Stat, NONE

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 31/45 ap0008_en_06

Working with analogue outputs

Values for analogue outputs are interpreted in a way that the range 0 to 32767 corresponds to
0 % to 100 % of the analogue output range. The analogue output range is available in Holding
Registers at addresses 0 to 7.

In order to convert values, we can use the following algorithm and modules VarWStat and

Interpol.

VarWStat AO8x_AO, @AO8x_AO_w, 0

If @AO8x_AO_w

 For i, 0.000, 7.000, 1.000

 Let tmpF1 = AO8x_AO[0,i]

 Interpol tmpF1, tmpF2, Range_AO

 Let M_AO8_AO[0,i] = Int(tmpF2)

 EndFor

EndIf

Working with LED

In the module DMM-AO8x, we are able to programme behaviour of LEDs on the module by means
of MODBUS that correspond to individual analogue outputs. This behaviour can be set using two
Holding Registers at addresses 8 and 9. LED behaviour is then as follows:

1. Value on the outputs is higher than the value of the register at address 9 – LED is blinking.

2. Value on the outputs is higher than the value of the register at address 8 and lower than the
value of the register at the address 9 – LED is on.

3. Value on outputs is lower than the value of the register at address 8 – LED is off.

The second condition is processed only if the first condition is not met. If neither the first nor the
second condition are met, the relevant LEDx is off.
Both limits can be identical or even zero. It is therefore not necessary to enter them. In zero output,
LEDx is off; for non-zero output, LEDx is on. LEDx does not get into the blinking mode when the
limits are identical.
If the value of register 9 is selected higher than the value of register 8, and if value on the outputs
is lower than the value of the register on position 8, LEDx is off.
If the value on the outputs is higher than the value of register 8 and lower than the value of register
9, LEDx is on.
If the value on the outputs is higher than the value of register on position 9, LEDx is blinking.

It also applies in this case that the range 0 to 32767 corresponds to 0 % to 100 % of the analogue
output range.

Retroactive reading of outputs and LED behaviour parameters

While writing values and parameters is automatic after a value is written into a defined variable
thanks to the priority Auto, reading has a defined priority –-manual--. That means that we need

to use modules MdbmRead or MdbmMark for non-periodic value loading.

Caution
If the module DMM-AO8U does not detect any frame (with any address) on the bus for a period of
10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max.
5 s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a project called
mpbus_p7_en_xx.dso created in DetStudio development environment. This project has been

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 32/45

created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

8.1.6 DMM-PDO6NI6

The module DMM-PDO6NI6 allows us to read one or multiple RTD inputs. The module provides
two modes for work with digital outputs.

◆ Working with classic digital inputs (values True / False) – option to read and write one or

multiple outputs.

◆ Working with outputs in PWM mode – option to read and write one or multiple PWM output

parameters.

The definition table of full communication with the module may look like in the following image.

Fig. 17 – Example of communication definition with DMM-PDO6NI6

According to the given definition, PWM output parameters change according to cells of the variable
M_PDONi_PWM type Matrix Int (e.g. dimension [1×7]) after every entry written into this variable.

Output statuses change according to bits 0 to 5 of the variable M_PDONi_DO type Int after every

entry written into this variable. Loaded RTD input values are saved into cells 0 to 5 of the variable
M_PDONi_Ni type Matrix Int (e.g. dimension [1×6]) every 1 ,000 ms.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for reading RTD input values. In our example, we set the property
ClientLabel to value 60.

MdbmReqSt 60, 1, M_PDONi_Stat, NONE

Working with RTD inputs

The values of inputs in Input registers at addresses 0 to 5 are interpreted in a way that the range 0
to 32767 corresponds to 0 % to 100 % of the input range.

In order to convert the values to the range 0 V to 5 V and subsequently to the measured
temperature value, we use e.g. the following algorithm using the module Interpol.

For i, 0.000, 5.000, 1.000

 Let tmpF1 = M_PDONi_Ni[0,i]

 Interpol tmpF1, tmpF2, Range0_5V

 Let PDONi_AI[0,i] = tmpF2

EndFor

Ni1000U2T PDONi_AI[0,0], PDONi_T[0,0], 6180, 15.000, 3920.000

Ni1000U2T PDONi_AI[0,1], PDONi_T[0,1], 6180, 15.000, 3920.000

…

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 33/45 ap0008_en_06

Working with classic digital outputs

We can use the communication variable M_PDONi_DO directly in the application algorithm; the

variable works with Coils at addresses 0 to 5.

In order to prevent unnecessary excess communications of identical values, it is recommended to
use the code stated in chapter 5.3 “Automatic communication”, section “Recommendation”.

Working with outputs in PWM mode

In the PWM mode, we are able to change duty cycle in individual outputs. Duty cycle is available in
Holding Registers at addresses 0 to 5. PWM period is entered at address 6 and it is common for all
digital outputs.

The values are interpreted in a way that 0 to 32767 corresponds to 0 % to 100 % range of the duty
cycle. PWM period value is interpreted in a way that 0 to 32 767 corresponds to 0 s to 100 s.

In order to convert values, we can use the following algorithm and modules VarWStat and

Interpol.

VarWStat PDONi_P_per, @PDONi_P_p_w, 0

If @PDONi_P_p_w

 Interpol PDONi_P_per, tmpF2, Params100_32

 Let M_PDONi_PWM[0,6] = Int(tmpF2)

EndIf

Note
The real output on the DO module DMM-PDO6NI6 is a logical sum of the value of DO and PWM.

Retroactive reading of outputs and PWM parameters

While writing parameters is automatic after a value is written into a defined variable thanks to the
priority Auto, reading has a defined priority –-manual--. That means that we need to use modules

MdbmRead or MdbmMark for non-periodic value loading.

Caution
If the module DMM-PDO6NI6 does not detect any frame (with any address) on the bus for a period
of 10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max. 5
s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a project called
mpbus_p8_en_xx.dso created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

8.1.7 DMM-UI8DO8

The module DMM-UI8DO8 allows us to read one or multiple analogue inputs in the form of
analogue values and binary states. We can read and write digital outputs one by one or by multiple
outputs.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 34/45

The definition table of full communication with the module may look like in the following image.

Fig. 18 – Example of communication definition with DMM-UI8DO8

According to the given definition, loaded universal-input values are saved into cells 0 to 7 of the
variable M_UIDO_UI type Matrix Int (e.g. dimension [1×8]) in the form of analogue values every

1 ,000 ms. Loaded input values are saved into bits 0 to 7 of the variable M_UIDO_DI type Int in the

form of binary values every 5 ,000 ms. Output statuses change according to bits 0 to 7 of the
variable M_UIDO_DO type Int after every entry written into this variable.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for reading analogue input values. In our example, we set the property
ClientLabel to value 70.

MdbmReqSt 70, 1, M_UIDO_Stat, NONE

Working with analogue inputs

The values of inputs in Input registers at addresses 0 to 7 are interpreted in a way that the range
0 to 32767 corresponds to 0 % to 100 % of the input range.

In order to convert the values to the range 0 V to 5 V, we use the following algorithm using the
module Interpol.

Let UIDO_f[0,0] = M_UIDO_AI[0,0]

Interpol UIDO_f[0,0], UIDO_AI[0,0], Range0_5V

Working with digital inputs

We can use the communication variable M_UIDO_DI directly in the application algorithm;

the variable works with Discrete inputs at addresses 0 to 7.

Working with digital outputs

We can use the communication variable M_UIDO_DO directly in the application algorithm;

the variable works with Coils at addresses 0 to 7.

In order to prevent unnecessary excess communications of identical values, it is recommended to
use the code stated in chapter 5.3 “Automatic communication”, section “Recommendation”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 35/45 ap0008_en_06

Retroactive reading of outputs

While writing states is automatic after a value is written into a defined variable thanks to the priority
Auto, reading has a defined priority –-manual--. That means that we need to use modules

MdbmRead or MdbmMark for non-periodic value loading.

Caution
If the module DMM-UI8DO8 does not detect any frame (with any address) on the bus for a period
of 10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max. 5
s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a project called
mpbus_p9_en_xx.dso created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

8.1.8 DMM-UI8RDO8

The module DMM-UI8RDO8 allows us to read one or multiple analogue inputs in the form of
analogue values and binary states. We can read and write digital outputs one by one or by multiple
outputs.

The definition table of full communication with the module may look like in the following image.

Fig. 19 – Example of communication definition with DMM-UI8RDO8

According to the given definition, loaded universal-input values are saved into cells 0 to 7 of the
variable M_UIRDO_UI type Matrix Int (e.g. dimension [1×8]) in the form of analogue values every

1 ,000 ms. Loaded input values are saved into bits 0 to 7 of the variable M_UIRDO_DI type Int in the

form of binary values every 5 ,000 ms. Output statuses change according to bits 0 to 7 of the
variable M_UIRDO_DO type Int after every entry written into this variable.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for reading analogue input values. In our example, we set the property
ClientLabel to value 80.

MdbmReqSt 80, 1, M_UIRDO_Stat, NONE

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 36/45

Working with analogue inputs

The values of inputs in Input registers at addresses 0 to 7 are interpreted in a way that the range
0 to 32767 corresponds to 0 % to 100 % of the input range.

In order to convert the values to the range 0 V to 5 V, we use the following algorithm using the
module Interpol.

Let UIRDO_f[0,0] = M_UIRDO_AI[0,0]

Interpol UIRDO_f[0,0], UIRDO_AI[0,0], Range0_5V

Working with digital inputs

We can use the communication variable M_UIRDO_DI directly in the application algorithm;

the variable works with Discrete inputs at addresses 0 to 7.

Working with digital outputs

We can use the communication variable M_UIRDO_DO directly in the application algorithm;

the variable works with Coils at addresses 0 to 7.

In order to prevent unnecessary excess communications of identical values, it is recommended to
use the code stated in chapter 5.3 “Automatic communication”, section “Recommendation”.

Retroactive reading of outputs

While writing states is automatic after a value is written into a defined variable thanks to the priority
Auto, reading has a defined priority –-manual--. That means that we need to use modules

MdbmRead or MdbmMark for non-periodic value loading.

Caution
If the module DMM-UI8RDO8 does not detect any frame (with any address) on the bus for a period
of 10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max. 5
s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
mpbus_p10_en_xx.dso created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

8.1.9 DMM-UI8AO8

The module DMM-UI8AO8 allows us to read one or multiple analogue inputs in the form of
analogue values and binary states. We can read and write analogue outputs one by one or by
multiple outputs.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 37/45 ap0008_en_06

The definition table of full communication with the module may look like in the following image.

Fig. 20 – Example of communication definition with DMM-UI8AO8

According to the given definition, loaded universal-input values are saved into cells 0 to 7 of the
variable M_UIAO_UI type Matrix Int (e.g. dimension [1×8]) in the form of analogue values every

1 ,000 ms. Loaded input values are saved into bits 0 to 7 of the variable M_UIAO_DI type Int in the

form of binary values every 5 ,000 ms. Output values are saved into cells 0 to 7 of the variable
M_UIAO_AO type Matrix Int (e.g. dimension [1×8]) after every entry written into this variable. LED

behaviour parameters are saved into cells of the variable M_UIAO_Leds type Matrix Int (e.g.

dimension [1×2]) after every entry written into this variable.

In order to detect the status of communication with the module, we use the module MdbmReqSt

linked to the label of the row for reading analogue input values. In our example, we set the property
ClientLabel to value 90.

MdbmReqSt 90, 1, M_UIAO_Stat, NONE

Working with analogue inputs

The values of inputs in Input registers at addresses 0 to 7 are interpreted in a way that the range
0 to 32767 corresponds to 0 % to 100 % of the input range.

In order to convert the values to the range 0 V to 5 V, we use e.g. the following algorithm using the
module Interpol.

Let UIAO_f[0,0] = M_UIAO_AI[0,0]

Interpol UIAO_f[0,0], UIAO_AI[0,0], Range0_5V

Working with digital inputs

We can use the communication variable M_UIAO_DI directly in the application algorithm;

the variable works with Discrete inputs at addresses 0 to 7.

Working with analogue outputs

Values for analogue outputs are interpreted in a way that the range 0 to 32767 corresponds to
0 % to 100 % of the analogue output range. The analogue output range is available in Holding
Registers at addresses 0 to 7.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 38/45

In order to convert values, we can use e.g. the following algorithm and modules VarWStat and

Interpol.

VarWStat UIAO_AO, @UIAO_AO_w, 0

If @UIAO_AO_w

 For i, 0.000, 7.000, 1.000

 Let tmpF1 = UIAO_AO[0,i]

 Interpol tmpF1, tmpF2, Range_AO

 Let M_UIAO_AO[0,i] = Int(tmpF2)

 EndFor

EndIf

Working with LED

In the module DMM-UI8AO8U, we are able to programme behaviour of LEDs on the module by
means of MODBUS that correspond to individual analogue outputs. This behaviour can be set
using two Holding Registers at addresses 8 and 9. LED behaviour is then as follows:

4. Value on the outputs is higher than the value of the register at address 9 – LED is blinking.

5. Value on the outputs is higher than the value of register at address 8 and lower than the value
of the register at the address 9 – LED is on.

6. Value on the outputs is lower than the value of the register at the address 8 – LED is off.

The second condition is processed only if the first condition is not met. If neither the first nor the
second condition are met, the relevant LEDx is off.
Both limits can be identical or even zero. It is therefore not necessary to enter them. In zero output,
LEDx is off; for non-zero output, LEDx is on. LEDx does not get in the blinking mode when the
limits are identical.
If the value of register 9 is selected higher than the value of register 8, and if value on the outputs
is lower than the value of the register on position 8, LEDx is off.
If the value on the outputs is higher than the value of register 8 and lower than the value of register
9, LEDx is on.
If the value on the outputs is higher than the value of register on position 9, LEDx is blinking.

It also applies in this case that the range 0 to 32767 corresponds to 0 % to 100 % of the analogue
output range.

Retroactive reading of outputs and LED behaviour parameters

While writing values and parameters is automatic after a value is written into a defined variable
thanks to the priority Auto, reading has a defined priority –-manual--. That means that we need

to use modules MdbmRead or MdbmMark for non-periodic value loading.

Caution
If the module DMM-UI8AO8U does not detect any frame (with any address) on the bus for a period
of 10 s, it interprets it as a communication failure and switches to a secure state. If it is in a network
with input modules, we recommend you choose a communication period with input modules max. 5
s (automatic priority Low). If it is in a network with only output modules, it is necessary to make

sure the variable written on outputs is marked for communication at least once in 5 s. We usually
do so by writing any value (even an identical value) into the given variable.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p11_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 39/45 ap0008_en_06

9 Appendix C

9.1 Programme operation AMR-OPxx

9.1.1 AMR-OP7x(RH) / AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)

On-wall controllers AMR-OP7x(RH), AMR-OP6x, AMR-OP4x and AMR-OP3xA(RH) provide
(either directly from production or after loading a relevant sample application) reading or writing
one or multiple values of Holding Registers in the form of analogue values and binary states.

The definition table of full communication with the on-wall controller may look like in the following
image.

Fig. 21 – Example of communication definition with AMR-OP7x(RH) / AMR-OP6x /
AMR-OP4x / AMR-OP3xA(RH)

More detailed descriptions of individual registers are available in the documentation for the given
on-wall controllers or in the description of the sample application.

In order to detect the status of communication with the on-wall controller, we use the module
MdbmReqSt linked to the label of the row for reading double-registers 102-103. In our example, we

set the property ClientLabel to value 10.

MdbmReqSt 10, 1, OP7x3x_ReqSt, NONE

Processing the status after a controller restart or a communication failure

In case of a controller restart or a communication failure, the value of the double-register 102-103
is set to value 0xFF. We expected such a combination of bits to be written into registers 100 and

101 in order for the controller to have a value room mode and fan mode.

Let OP7x3x_Reset = 0xFF

Let OP7x3x_Set = (FanMode << 4) | (RoomMode << 1)

Furthermore, it is recommended to write previous correction values, setpoint room temperature
and LED brightness and a new time for the screensaver into the controller as well.

MdbmWrite 10, 2, NONE

Let OP7x3x_SetPt = OP7x3x_SetPt

Let OP7x3x_LED = OP7x3x_LED

GetTime OP7x3x_Time, NONE, NONE

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 40/45

Loading new values from the controller

On-wall controllers use bit 0 of the double-register 102-103 to signalize a value change on part of
the controller. This bit can be used in a condition, and when this condition is met, the bit resets,
and when the process is running, new values are read from the controller.

If OP7x3x_Stats.0

 Let OP7x3x_Reset = 0b1

 Let OP7x3x_Set = 0

 Let @OP3x7x_read = true

Else

 If @OP3x7x_read

 Let @OP3x7x_read = false

 MdbmRead 10, 2, NONE

 MdbmRead 10, 3, NONE

 Let FanMode = Int((OP7x3x_Stats & 0b1110000) >> 4)

 Let RoomMode = Int((OP7x3x_Stats & 0b110) >> 1)

 EndIf

EndIf

Writing actual values into the controller

If the controller is not after a restart or recovering from a communication failure, and no new values
are being read from the controller, we can write our own values into the controller.

In order to write a room mode and fan mode, we use the comparison of the previous loaded value
of the double-register 102-103 with current values in variables.

If (FanMode != Int((OP7x3x_Stats & 0b1110000) >> 4)) or (RoomMode != Int((OP7x3x_Stats

& 0b110) >> 1))

 Let OP7x3x_Set = (FanMode << 4) | (RoomMode << 1)

 Let OP7x3x_Reset = 0b1110110 - (FanMode << 4) - (RoomMode << 1)

EndIf

It is necessary to write the actual correction value by means of modules of so called safe writing.

If @OP3x7x_w_cr

 Let @OP3x7x_w_cr = false

 MdbmWrBeg 10, 2, NONE

 Let OP7x3x_Corr = NewCorr

 MdbmWrFin 10, 2, NONE

EndIf

We are able to write the setpoint room temperature value at any time thanks to Write priority Auto.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p12_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

9.1.2 AMR-OP7xC

Unlike in on-wall controllers AMR-OP7x(RH), AMR-OP6x, AMR-OP4x and AMR-OP3xA(RH), the
layout of communication Holding Registers is different in terms of presence of registers for working
with CO2.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 41/45 ap0008_en_06

The definition table of full communication with the on-wall controller may look like in the following
image.

Fig. 22 – Example of communication definition with AMR-OP7xC

More detailed descriptions of individual registers are available in the documentation for the given
on-wall controller.

In order to detect the status of communication with the on-wall controller, we use the module
MdbmReqSt linked to the label of the row for reading double-registers 102-103. In our example, we

set the property ClientLabel to value 20.

MdbmReqSt 20, 1, OP7xC_ReqSt, NONE

Processing the status after a controller restart or a communication failure

The processing procedure corresponds to the previous case from chapter 9.1.1 “AMR-OP7x(RH) /
AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)”, section “Processing the status after a controller
restart or a communication failure”.

The only difference is in writing the limit value of CO2 concentration instead of the LED brightness
value.

Let OP7xC_LmtCO2 = OP7xC_LmtCO2

Loading new values from the controller

The processing procedure corresponds to the previous case from chapter 9.1.1 “AMR-OP7x(RH) /
AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)”, section “Loading new values from the controller”.

The only difference is added reading of the measured CO2 value.

MdbmRead 20, 4, NONE

Writing actual values into the controller

The processing procedure corresponds to the previous case from chapter 9.1.1 “AMR-OP7x(RH) /
AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)”, section “Writing actual values into the controller”.

The only difference is the option to write the limit value of CO2 concentration at any moment thanks
to Write priority Auto in this register.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p13_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 42/45

9.1.3 AMR-OP7xRHC

Unlike in the on-wall controller AMR-OP7xC, the layout of communication Holding Registers is
different in terms of register order for working with CO2.

The definition table of full communication with the on-wall controller may look like in the following
image.

Fig. 23 – Example of communication definition with AMR-OP7xRHC

More detailed descriptions of individual registers are available in the documentation for the given
on-wall controller.

In order to detect the status of communication with the on-wall controller, we use the module
MdbmReqSt linked to the label of the row for reading double-registers 102-103. In our example, we

set the property ClientLabel to value 30.

MdbmReqSt 30, 1, OP7RHC_ReqSt, NONE

Processing the status after a controller restart or a communication failure

The processing procedure corresponds to the previous case from chapter 9.1.1 “AMR-OP7x(RH) /
AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)”, section “Processing the status after a controller
restart or a communication failure”.

The only difference is in writing the limit value of CO2 concentration instead of the LED brightness
value.

Let OP7RHC_LmtH2 = OP7RHC_LmtH2

Loading new values from the controller

The processing procedure corresponds to the previous case from chapter 9.1.1 “AMR-OP7x(RH) /
AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)”, section “Loading new values from the controller”.

The only difference is that the matrix variable OP7RHC_Vals also includes the loaded value of the

measured CO2 concentration.

Writing actual values into the controller

The processing procedure corresponds to the previous case from chapter 9.1.1 “AMR-OP7x(RH) /
AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)”, section “Writing actual values into the controller”.

The only difference is the option to write the limit value of CO2 concentration at any moment thanks
to Write priority Auto in this register.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p14_en_xx.dso” created in DetStudio development environment. This project has been

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 43/45 ap0008_en_06

created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

9.1.4 AMR-OP40(RH)C

Unlike the aforementioned on-wall controllers, layout of communication Holding Registers is
different since it does not use status registers.

The definition table of full communication with the on-wall controller may look like in the following
image.

Fig. 24 – Example of communication definition with AMR-OP40(RH)C

More detailed descriptions of individual registers are available in the documentation for the given
on-wall controller.

In order to detect the status of communication with the on-wall controller, we use the module
MdbmReqSt linked to the label of the row for reading registers 108 to 113. In our example, we set

the property ClientLabel to value 40.

MdbmReqSt 40, 1, OP40C_ReqSt, NONE

Processing the status after a controller restart or a communication failure

The on-wall controller does not signalize a restart or a communication failure. For this purpose, we
can use a variable with a communication status. LED brightness and limit values of CO2
concentration are therefore written when a communication failure has been detected and the
communication has been re-established.

If OP40C_ReqSt.4

 Let @OP40C_write = true

EndIf

If @OP40C_write and OP40C_ReqSt.1

 Let @OP40C_write = false

 Let OP40C_LED = OP40C_LED

 Let OP40C_LmtH1 = OP40C_LmtH1

 Let OP40C_LmtH2 = OP40C_LmtH2

EndIf

Loading new values from the controller

Values from the controller are loaded periodically with Low priority, i.e. every 5,000 ms.

Writing actual values into the controller

Values can be written at any time thanks to Write priority Auto in given registers.

Stated algorithms are included in annex ap0008_en_xx.zip. It is a sample project called
“modbs_p15_en_xx.dso” created in DetStudio development environment. This project has been
created for the control system AMiNi4DW2. However, it can be modified to suit any control system
fitted with a serial communication interface using the DetStudio menu “Tools/Change Station”.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

ap0008_en_06 44/45

10 Technical support
The AMiT Technical Support Department provides all information regarding communication in
MODBUS RTU network. The Technical support is best contacted via e-mail at support@amit.cz.

COMMUNICATION IN MODBUS RTU NETWORK (PSEDET)

 45/45 ap0008_en_06

11 Warning
In this document, AMiT, spol. s r. o. provides information as it is, and the company does not provide
any warranty concerning the contents of this publication and reserves the right to change the
documentation content without any obligation to inform anyone or any authority about it.

This document can be copied and redistributed under the following conditions:

1. The whole text (all pages) must be copied without making any modifications.

2. All redistributed copies must retain the AMiT, spol. s r. o. copyright notice and any other
notices contained in the documentation.

3. This document must not be distributed for profit.

The names of products and companies used herein may be trademarks or registered
trademarks of their respective owners.

	1 Definitions of terms
	2 MODBUS protocol
	2.1 Supported MODBUS functions

	3 Connecting the communication network
	4 Time conditions in the network
	4.1 Communication period
	4.1.1 Communication priorities
	4.1.2 Gathering communication frames

	4.2 Communication in the event of a connection failure
	4.3 Connection failure detection in modules DMM-xxx

	5 Control system as Master
	5.1 Communication definition
	5.2 Definition of a Slave station and data points for communication
	5.3 Automatic communication
	5.4 Manual communication
	5.5 Communication statuses
	5.6 Example of a control system parametrization as Master

	6 Control system as Slave
	6.1 Communication definition
	6.2 Definition of data points for communication
	6.3 Communication statuses
	6.4 Example of a control system parametrization as Slave

	7 Appendix A
	7.1 Compatibility with communication initialization via modules
	7.1.1 MODBUS Master
	7.1.2 MODBUS Slave

	8 Appendix B
	8.1 Programme operation DMM-xxx
	8.1.1 DMM-DI24
	8.1.2 DMM-DO18
	8.1.3 DMM-RDO12
	8.1.4 DMM-AI12
	8.1.5 DMM-AO8x
	8.1.6 DMM-PDO6NI6
	8.1.7 DMM-UI8DO8
	8.1.8 DMM-UI8RDO8
	8.1.9 DMM-UI8AO8

	9 Appendix C
	9.1 Programme operation AMR-OPxx
	9.1.1 AMR-OP7x(RH) / AMR-OP6x / AMR-OP4x / AMR-OP3xA(RH)
	9.1.2 AMR-OP7xC
	9.1.3 AMR-OP7xRHC
	9.1.4 AMR-OP40(RH)C

	10 Technical support
	11 Warning

